...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

9, Để căn thức trên có nghĩa khi \(1-x^2\ge0\Leftrightarrow-1\le x\le1\)

10, Để căn thức trên có nghĩa khi \(\hept{\begin{cases}\frac{x-2}{x+3}\ge0\\x+3\ne0\end{cases}}\Leftrightarrow x< -3;x\ge2\)

22 tháng 6 2017

a, \(\sqrt{x^2+5}\)

Để căn thức có nghĩa thì \(x^2+5\ge0\Rightarrow x^2\ge-5\)

\(\Rightarrow x\in R\)

Vậy \(x\in R\) thì căn thức có nghĩa.

b, \(\sqrt{\dfrac{2}{3x-5}}\)

Để căn thức có nghĩa thì \(\dfrac{2}{3x-5}\ge0\Rightarrow3x-5>0\)

(do \(3x-5\ne0\) thì \(\dfrac{2}{3x-5}\) có nghĩa)

\(\Rightarrow3x>5\Rightarrow x>\dfrac{5}{3}\)

Vậy....

c, \(\sqrt{-2x+3}\)

Để căn thức có nghĩa thì \(-2x+3\ge0\Rightarrow-2x\ge-3\)

\(\Rightarrow x\ge\dfrac{3}{2}\)

Vậy.......

d, \(\sqrt{\dfrac{4}{x+3}}\)

Để căn thức có nghĩa thì \(\dfrac{4}{x+3}\ge0\Rightarrow x+3>0\)

(do \(x+3\ne0\) thì \(\dfrac{4}{x+3}\) có nghĩa)

\(\Rightarrow x>-3\)

Vậy......

Chúc bạn học tốt!!! Mấy câu còn lại làm tương tự!

22 tháng 6 2017

1) căn thức luôn có nghĩa (không có đk)

2) \(x\ne\dfrac{5}{3}\)

3) \(x\le\dfrac{3}{2}\)

4) \(x>-3\) ; \(x\ne-3\)

5) \(x< \dfrac{3}{2}\) ; \(x\ne\dfrac{3}{2}\)

6) \(x\le-5\) hoặc \(x\ge2\)

7) \(x\ne3\) ; \(-5\le x< 3\)

8) \(-2\le x\le5\)

19 tháng 9 2021

A=6x-1+căn [ x-4 ]2

Câu 2: Cho biểu thức:1) Tìm điều kiện của x để biểu thức A có nghĩa .2) Rút gọn biểu thức A .3) Giải phương trình theo x khi A = -2 .Câu 3: Cho biểu thức:a) Với những giá trị nào của a thì A xác định.b) Rút gọn biểu thức A .c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .Câu 4:a) Rút gọn biểu thức:b) Chứng minh rằng 0 ≤ C < 1Câu 5: Cho biểu thứca) Rút gọn Q.b) Tính giá trị...
Đọc tiếp

Câu 2: Cho biểu thức:

1) Tìm điều kiện của x để biểu thức A có nghĩa .

2) Rút gọn biểu thức A .

3) Giải phương trình theo x khi A = -2 .

Câu 3: Cho biểu thức:

a) Với những giá trị nào của a thì A xác định.

b) Rút gọn biểu thức A .

c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .

Câu 4:

a) Rút gọn biểu thức:

b) Chứng minh rằng 0 ≤ C < 1

Câu 5: Cho biểu thức

a) Rút gọn Q.

b) Tính giá trị của Q khi a = 3 + 2√2.

c) Tìm các giá trị của Q sao cho Q < 0.

Câu 6: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tìm các giá trị của x để P = 6/5.

Câu 7: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tím các giá trị nguyên của x để P có giá trị nguyên.

Câu 8: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị nguyên của x để P có giá trị nguyên.

c) Tìm GTNN của P và giá trị tương ứng của x.

Câu 9: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị của x để P > 0.

c) Tính giá trị của P khi x = 7 - 4√3.

d) Tìm GTLN của P và giá trị tương ứng của x.

2
27 tháng 4 2018

sora béo chưa ghi biểu thức

27 tháng 4 2018

Biểu thức nào hả bn ?

19 tháng 2 2020

\(\sqrt{2020}+\sqrt{-\frac{3}{x+3}}\)

Căn thức trên có nghĩa khi:\(\hept{\begin{cases}x+3\ne0\\-\frac{3}{x+3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x< -3\end{cases}}}}\)

\(\Rightarrow x< -3\)

22 tháng 12 2016

a) \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}-\frac{2}{4-x}\right):\frac{\sqrt{x}+3}{\sqrt{x}-2}\left(ĐK:x\ge0;x\ne4\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-2+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+3}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+3}=\frac{\sqrt{x}}{\sqrt{x}+2}\)

b) Vì: \(\sqrt{x}+4>0,\forall x\inĐK\)

=> \(2\sqrt{x}+4>\sqrt{x}\)

=> \(\frac{\sqrt{x}}{2\sqrt{x}+4}< 0\)

=> \(\frac{\sqrt{x}}{\sqrt{x}+2}< 2\)

=>đpcm

27 tháng 5 2018

\(\sqrt{x+\frac{3}{7-x}}hay\sqrt{x+\frac{3}{7}-x}\) vậy?

28 tháng 11 2019

Để \(\sqrt{\frac{x+3}{7-x}}\)có nghĩa thì x + 3 và 7 - x cùng dấu

\(TH1:\hept{\begin{cases}x+3\ge0\\7-x>0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x< 7\end{cases}}\Rightarrow-3\le x< 7\)(Vì x = 7 thì bt không có nghĩa)

\(TH2:\hept{\begin{cases}x+3\le0\\7-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-3\\x>7\end{cases}}\left(L\right)\)

Vậy \(-3\le x< 7\)

undefinedundefined

0