Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2x2y - 1 = x2 + 3y
<=> 4x2y - 2 - 2x2 - 6y = 0
<=> 2x2(2y - 1) - 3(2y - 1) = 5
<=> (2x2 - 3)(2y - 1) = 5 = 1.5
Lập bảng:
2x2 - 3 | 1 | 5 |
2y - 1 | 5 | 1 |
x | \(\pm\sqrt{2}\)(loại) | 2 |
y | 1 |
Vậy nghiệm (x;y) của phương trình là (2; 1)
\(2x^2y-1=x^2+3y\)
\(\Leftrightarrow4x^2y-2=2x^2+6y\)
\(\Leftrightarrow\left(2y-1\right)\left(2x^2-3\right)=5\)
Đến đây đơn giản rồi :))))
Ta chia thành 2 trường hợp :
a)y2+y=x4+x3+x2+x=0 (1)
...(1)<=>y(y+1)=x(x3+x2+x+1)=0
...Pt này có 4 nghiệm sau
...x1=0; y1=0
...x2=0; y2= -1
...x3= -1; y3=0
...x4= -1; y4= -1
b)y2+y=x4+x3+x2+x (# 0) (2)
...ĐK để 2 vế khác 0 là x và y đều phải khác 0 và -1.Với ĐK đó thì
...(2)<=>y(y+1)=(x2)(x2+x+1+1x1x)
...Đến đây lại chia 2 th :
...+{y=x2
.....{x+1+1x1x=1 (3)
.....(3) vô nghiệm =>th này vô nghiệm
...+{y+1=x2
.....{x+1+1x1x= -1
....=>x= -1; y=0 (theo ĐK ở trên nghiệm này phải loại)
...Vậy khi y2+y=x4+x3+x2+x # 0 thì pt vô nghiệm
Tóm lại pt đã cho có 4 nghiệm
x1=0; y1=0
x2=0; y2= -1
x3= -1; y3=0
x4= -1; y4= -1
P/s:Mik ko chắc
Ta có \(0< 3y^2+1< 4y^2+4\)
=> \(y^4< y^4+3y^4+1< \left(y^2+2\right)^2\)
=> \(y^4< x^4< \left(y^2+2\right)^2\)
Mà x,y nguyên
=> \(x^2=y^2+1\)
=> \(y^4+2y^2+1=y^4+3y^2+1\)
=> \(y=0\)=> x=0
Vậy (x,y)=(0;0)
Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.
\(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)
Coi phương trình trên có ẩn là x.
Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)
\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)
\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)
Thay vào từng giá trị nguyên của y để tìm x=)
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))
TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)
+4xy vào mỗi vế
=> nhóm VP = (xy+2)^2; VT = (2x+y)^2 + 3x + 3y
=> VT là SCP
kẹp:
(2x+y)^2< (2x+y)^2 + 3x + 3y<(2x+y+2)^2(do x,y nguyên dương)
=> (2x+y)^2 + 3x + 3y = (2x+y+1)^2
=> y = x+1
thay vào
x2y2+4=4x2+y2+3x+3y
r giải pt có x,ytự làm nốt