K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.

8 tháng 2 2019

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)

Coi phương trình trên có ẩn là x.

Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)

\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)

\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)

Thay vào từng giá trị nguyên của y để tìm x=)

19 tháng 9 2019

x2+2y2+2xy-4x-3y-2=0

<=> (x2+y2-4+2xy-4y-4x)+(y2+y+2)=0

<=> (x+y-2)2+\(\left[\left(y+\frac{1}{2}\right)^2+\frac{7}{4}\right]\)=0

Dễ thấy VT >0 => pt vô nghiệm

NV
19 tháng 9 2019

\(x^2+2\left(y-2\right)x+2y^2-3y-2=0\)

\(\Delta'=\left(y-2\right)^2-\left(2y^2-3y-2\right)\ge0\)

\(\Leftrightarrow-y^2-y+6\ge0\)

\(\Rightarrow-3\le y\le2\)

Do x; y nguyên dương \(\Rightarrow y=\left\{1;2\right\}\)

- Với \(y=1\Rightarrow x^2-2x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=3\end{matrix}\right.\)

- Với \(y=2\Rightarrow x^2=0\Rightarrow x=0\left(l\right)\)

Vậy pt có cặp nghiệm nguyên dương duy nhất \(\left(x;y\right)=\left(3;1\right)\)

13 tháng 8 2016
VT >0 với mọi x,y dương nên phương trình vô nghiệm
22 tháng 5 2017

pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1) 

để pt có nghiệm x nguyên thì delta phải là số chính phương 

xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x 

-nghĩ vậy chả biết có đúng không <(")

8 tháng 6 2020

Ta có: 2x2y - 1 = x2 + 3y

<=> 4x2y - 2 - 2x2 - 6y = 0

<=> 2x2(2y - 1) - 3(2y - 1) = 5

<=> (2x2 - 3)(2y - 1) = 5 = 1.5

Lập bảng:

2x2 - 3 1 5
 2y - 1 5 1
  x\(\pm\sqrt{2}\)(loại)2
  y  1

Vậy nghiệm (x;y) của phương trình là (2; 1)

\(2x^2y-1=x^2+3y\)

\(\Leftrightarrow4x^2y-2=2x^2+6y\)

\(\Leftrightarrow\left(2y-1\right)\left(2x^2-3\right)=5\)

Đến đây đơn giản rồi :))))