Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(21x^2+21y^2+z^2\)
\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)
\(\ge9\left(x+y\right)^2+z^2+3.2xy\)
\(\ge2.3\left(x+y\right).z+6xy\)
\(=6\left(xy+yz+zx\right)=6.13=78\)
Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6
2) \(x+y+z=3xyz\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3
Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)
Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)
\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)
Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\); \(b=2\sqrt{\frac{3}{5}}\)
khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Ta co : \(x^2+y^2-4x+3=0\)
\(=>\left(x-2\right)^2+y^2=1\)
\(=>\left(x-2\right)^2\le1=>x\le3\)
Lai co : \(x^2+y^2=4x-3\le4.3-3=9\)
Dau = xay ra \(< =>\hept{\begin{cases}x=4\\y=0\end{cases}}\)
Vay gtln cua P = 9 khi x = 4 ; y = 0
(sai thi bo qua cho minh vi lan dau lam dang nay)
\(\left(x-1\right)^3+\left(x-3\right)^3+8\left(2-x\right)^3=0\)
\(\left(x-1+x-3\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(x-3\right)+\left(x-3\right)^2\right]+\left[2\left(2-x\right)\right]^3=0\)
\(\left(2x-4\right)\left(x^2-2x+1-x^2+4x-3+x^2-4x+4\right)+\left(4-2x\right)^3=0\)
\(\left(2x-4\right)\left(x^2-4x+7\right)-\left(2x-4\right)^3=0\)
\(\left(2x-4\right)\left[x^2-4x+7-\left(2x-4\right)^2\right]=0\)
\(2\left(x-2\right)\left(x^2-4x+7-4x^2+16x-16\right)=0\)
\(2\left(x-2\right)\left(12x-3x^2-9\right)=0\)
\(6\left(x-2\right)\left(4x-x^2-3\right)=0\)
\(6\left(x-2\right)\left(3x-x^2+x-3\right)=0\)
\(6\left(x-2\right)\left[x\left(3-x\right)-\left(3-x\right)\right]=0\)
\(6\left(x-2\right)\left(3-x\right)\left(x-1\right)=0\)
\(\Rightarrow x=\left\{1;2;3\right\}\)
\(\left(x-1\right)^3+\left(x-3\right)^3+8\left(2-x\right)^3=0\)
\(\Rightarrow x^3-2x^2+x-x^2+2x+1+x^3-6x^2+9x-3x^2+18x-27+64-64x+16x^2-32x+32x^2-8x^3=0\)
\(\Rightarrow-6x^3+36x^2-66x+36=0\)
\(\Rightarrow-6\left(x^3-6x^2+11x-6\right)=0\)
\(\Rightarrow\left(x^2-5x+6\right)\left(x-1\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)
=> x - 3 = 0 ; x - 2 = 0 hoặc x - 1 = 0
=> x = 3 ; x = 2 hoặc x = 1