Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đọc bài này thì tham khảo thôi, ko cần làm đâu, mk nghĩ ra rồi
bài này tui nhớ ko lầm thì tách thành A=n4+4.n2.4k+4.42k-4.n2.4k
sau đó phân tích thành nhân tử
ta có phương trình đó
<=> \(x^2+4x+4-y^4=3\Leftrightarrow\left(x+2\right)^2-y^4=3\Leftrightarrow\left(x+2-y^2\right)\left(x+2+y^2\right)=3\)
đến đây đưa về ước của 3 thì tự lập bảng nhé
x( x + y )2 - y + 1 = 0
<=> x( x2 + 2xy + y2 ) - y + 1 = 0
<=> x3 + 2x2y + xy2 - y + 1 = 0
<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)
Coi (*) là phương trình bậc 2 ẩn y , x là tham số
(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0
<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥ 0
<=> -4x2 - 4x + 1 ≥ 0
<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)
Vì x nguyên => x ∈ { -1 ; 0 }
+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)
+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)
Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }
Vì số nguyên tố nhỏ nhất là 2 nên \(q\ge2\Leftrightarrow5q^2\ge20\)
Lại có: \(p^2-5q^2=4\Leftrightarrow p^2=4+5q^2\ge4+20=24\)
\(\Rightarrow p\ge4,9\)
Mà p là số nguyên tố \(\Rightarrow p\ne3\Rightarrow p⋮̸3\)
Ta có tình chất sau: Một số không chia hết cho 3 khi bình phương lên luôn chia 3 dư 1
Nên \(p^2:3\)(dư 1)
Ta lại có 4 :3 dư 1
\(\Rightarrow5q^2⋮3\Rightarrow q⋮3\)
Mà q là số nguyên tố nên q = 3.
Thay q vào phương trình ban đầu ta được p = 7 (thỏa mãn p là số nguyên tố)
Ta có: \(p^2=8q+9\)
<=>\(p^2-9=8q\)
<=>\(\left(p-3\right)\left(p+3\right)=8q\)
Do q là số nguyên tố=> q chia hết cho 1 hoặc chính nó =>Một trong hai số \(p-3\)và \(p+3\)bằng 8
=>\(\orbr{\begin{cases}p-3=8\\p+3=8\end{cases}}\)<=>\(\orbr{\begin{cases}p=11\\p=5\end{cases}}\)<=>\(\orbr{\begin{cases}q=14\left(lọai\right)\\q=2\end{cases}}\)
Vậy \(p=5\)và \(q=2\)