Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x( x + y )2 - y + 1 = 0
<=> x( x2 + 2xy + y2 ) - y + 1 = 0
<=> x3 + 2x2y + xy2 - y + 1 = 0
<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)
Coi (*) là phương trình bậc 2 ẩn y , x là tham số
(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0
<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥ 0
<=> -4x2 - 4x + 1 ≥ 0
<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)
Vì x nguyên => x ∈ { -1 ; 0 }
+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)
+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)
Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }
tìm điều kiện của K để A chia hết cho 16 biết A=K ^4+2^ 3-16k^ 2-2k -15
Ta có: \(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)(1)
Vì x > 0 nên \(\left(1\right)\Leftrightarrow x^2=2x\left(x-y\right)+2y-x+2\)
\(\Leftrightarrow x^2-2x^2+2xy-2y+x=2\Leftrightarrow\left(1-x\right)\left(x-2y\right)=2\)
Do x, y là số nguyên nên ta có bảng sau:
Mà x, y dương nên có các cặp số nguyên (x; y) thỏa mãn là (2; 2) và (3; 2)
\(\left(y+2\right)x^2+1=y^2\Leftrightarrow x^2y+2x^2+1-y^2=0\Leftrightarrow\)\(x^2y+2x^2+4-y^2-3=0\Leftrightarrow x^2\left(y+2\right)-\left(y^2-4\right)=3\)\(\Leftrightarrow x^2\left(y+2\right)-\left(y+2\right)\left(y-2\right)=3\)
\(\Leftrightarrow\left(y+2\right)\left(x^2-y+2\right)=3\)
Ta có bảng:
y + 2 | 1 | 3 | -1 | -3 |
x2 - y + 2 | 3 | 1 | -3 | -1 |
y | -1 | 1 | -3 | -5 |
x | 0 | 0 | Không tồn tại | Không tồn tại |
KL | Chọn | Chọn |
Vậy ta tìm được cặp (x ; y) = (0 ; 1) và (0; -1).
\(PT\Leftrightarrow x^2\left(y+2\right)+4-y^2=3\)
\(\Leftrightarrow\left(y+2\right)\left(x^2+2-x\right)=3\)
+, Trường hợp: \(\hept{\begin{cases}y+2=3\\x^2+2-x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
+, Trường hợp: \(\hept{\begin{cases}y+2=1\\x^2+2-x=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
â, đánh giá về trái ta có
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}>=1\)
\(\sqrt{9y^2-6y+1}>=0\)
do đó dấu bằng xảy ra khi x=2 va y=1/3
phần b làm tương tự
b, VT <=2-1=1
ta có phương trình đó
<=> \(x^2+4x+4-y^4=3\Leftrightarrow\left(x+2\right)^2-y^4=3\Leftrightarrow\left(x+2-y^2\right)\left(x+2+y^2\right)=3\)
đến đây đưa về ước của 3 thì tự lập bảng nhé