K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

B1 : 

Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a

Tương tự b^2/c+a + c+a/4 >= b

c^2/a+b + a+b/4 >= c

=> VT + a+b+c/2 >= a+b+c

=> VT >= a+b+c/2 = VP 

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

k mk nha

6 tháng 11 2017

Giả sử   \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.

Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)

TH1: Nếu trong a và b có một số chẵn, một số lẻ:

Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)

\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)

Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)

\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.

Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.

Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.

TH2: Nếu cả a và b đều lẻ

\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.

Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1) 

Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)

Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.

Vậy k luôn bằng 5 và nó là số nguyên tố.

30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.Câu 1:a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)Câu 2:a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)b) Cho số tự nhiên \(n\ge2\).Biết rằng với...
Đọc tiếp

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.

Câu 1:

a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)

b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)

Câu 2:

a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)

b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.

Câu 3: 

a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.

Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)

b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:

\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.

a) Chứng minh: E, L, F thẳng hàng 

b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.

Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.

Hết!

 

2
20 tháng 4 2019

Đây là đề của trường nào vậy bạn?

21 tháng 4 2019

Đề khó vcl ...

Vì P là số nguyên tố, P là scp 

=> Vô lý

Vậy không tìm được giá trị nào

Vì P là số nguyên tố, P là scp 

=> Vô lý

Vậy không tìm được giá trị nào

9 tháng 6 2021

Ta có:

Giả sử p là số nguyên tố. \(\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{p}\Leftrightarrow\frac{a^2+b^2}{a^2b^2}=\frac{1}{p}\Leftrightarrow pa^2+pb^2=a^2b^2\)'

Gọi: d=(a,b) khi đó: a=da';b=db' (với (a',b')=1).

Thay vào ta được: 

\(pa'^2+pb'^2=d^2a'^2b'^2\). Từ đây suy ra: \(pa'^2\)sẽ chia hết cho \(b'^2\). Mà (a',b')=1 nên( a'2,b'2)=1 hay p chia hết cho b'^2 mà p là số nguyên tố nên: b'=1 tương tự thì a'=1 thay vào lại giả thiết ta được: \(\frac{2}{d^2}=\frac{1}{p}\Leftrightarrow2p=d^2\). Từ đây suy ra d2 chia hết cho 2 hay d chia hết cho 2 nên d2 chia hết cho 4 suy ra 2p chia hết cho 4 từ đây thì: p=2. Thử lại với a=b=2;p=2 thì vẫn thỏa mãn nên bạn kiểm tra lại đề.