Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)và \(x+y-z=69\)
Theo đề bài, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)
\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)
Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)
Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))
\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6
Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:
\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)
Vì \(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)
\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)
\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)
Vậy x=60; y=72; z=63
a)Ta có: \(\frac{x}{y+z+1}=\frac{y}{x+y+2}=\frac{z}{x+y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z+1}=\frac{y}{x+y+2}=\frac{z}{x+y-3}\)
\(=\frac{x+y+z}{y+z+1+x+y+2+x+y-3}\)
\(=\frac{x+y+z}{2x+2y+2z}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+\left(z^2+\dfrac{1}{z^2}\right)=6\)
=> VT≥\(2.\sqrt{x^2.\dfrac{1}{x^2}}+2.\sqrt{y^2.\dfrac{1}{y^2}}+2.\sqrt{z^2.\dfrac{1}{z^2}}\)
= 2+2+2=6
Dau bang xay ra khi: \(\left\{{}\begin{matrix}x^2=\dfrac{1}{x^2}\\y^2=\dfrac{1}{y^2}\\z^2=\dfrac{1}{z^2}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\pm1\\y=\pm1\\z=\pm1\end{matrix}\right.\)
a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào đề bài ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z
b) Theo đề bài ta có sẵn x+y+z khác 0
Áp dụng dãy tỉ số rồi làm tương tự câu a
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
Áp dụng BĐT Cauchy cho 2 số dương ta có:
\(x^2+\dfrac{1}{x^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
Tương tự: \(y^2+\dfrac{1}{y^2}\ge2\)
\(z^2+\dfrac{1}{z^2}\ge2\)
Cộng vế theo vế 3 BĐT cùng chiều trên ta được:
\(x^2+y^2+z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge6\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x^2=\dfrac{1}{x^2}\\y^2=\dfrac{1}{y^2}\\z^2=\dfrac{1}{z^2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\) ( Vì x,y,z nguyên dương )
Vậy các số x,y,z thỏa mãn đề bài là (x;y;z)= ( 1;1;1)
Cách khác: Không sử dụng BĐT Cauchy
Pt \(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+\left(z^2+\dfrac{1}{z^2}\right)=6\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+2+\left(y-\dfrac{1}{y}\right)^2+2+\left(z-\dfrac{1}{z}\right)^2+2=6\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+\left(z-\dfrac{1}{z}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\y-\dfrac{1}{y}=0\\z-\dfrac{1}{z}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)( Vì x,y,z nguyên dương )