Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(x^2+x+23=k^2\left(k\in N\right)\Leftrightarrow4x^2+4x+92=4k^2\Leftrightarrow4k^2-\left(2x+1\right)^2=91\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=91\)
vì 2k+2x+1>2k-2x-1>0 nên xảy ra 2 trường hợp sau
th1 2k+2x+1=91 và 2k-2x-1=1 => x=22
th2 2k+2x+1=1 và 2k-2x-1=7 => x=1
vậy x=22; x=1 thì \(\sqrt{x^2+x+3}\)là số hữu tỉ
Dễ thấy phương trình có nghiệm tầm thường là x = y = 0.
Tìm nghiệm khác 0. Đặt:
\(x=\frac{m}{n};y=\frac{-k}{l}\)(m, n, l, k khác 0)
\(\sqrt{\frac{3}{2}}=\frac{m.l}{n.k}\)
Vế trái là số vô tỷ. Do đó không có bất kỳ m, n, l, k nào thỏa mãn vì vế phải luôn luôn là số hữu tỷ.
Vậy phương trình có 1 nghiệm x = y = 0
Câu hỏi của Nguyễn Phong - Toán lớp 8 - Học toán với OnlineMath
\(x^3+y^3=2xy\)
Bình phương 2 vế ta được:
\(\left(x^3+y^3\right)^2=4x^2y^2\)
<=> \(x^6+y^6+2x^3y^3=4x^2y^2\)
<=> \(x^6+y^6-2x^3y^3=4x^2y^2-4x^3y^3\)
<=> \(\left(x^3-y^3\right)^2=4x^2y^2\left(1-xy\right)\)
<=> \(1-xy=\frac{\left(x^3-y^3\right)^2}{4x^2y^2}=\left(\frac{x^3-y^3}{2xy}\right)^2\)
=> \(\sqrt{1-xy}=\left|\frac{x^3-y^3}{2xy}\right|\) là 1 số hữu tỉ
=> đpcm
a) \(4\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\) là bình phương 1 số hữu tỉ => 4(xy+yz+zx) cũng là bp số hữu tỉ mà 4=22 => xy+yz+zx là bp 1 số hữu tỉ
b) \(x^2+y^2+z^2=2\left(xy+yz+zx\right)\)\(\Leftrightarrow\)\(\left(x+y\right)^2+z^2=4xy+2yz+2zx\)
\(\Leftrightarrow\)\(\left(x+y\right)^2-2z\left(x+y\right)+z^2=4xy\)\(\Leftrightarrow\)\(\left(x+y-z\right)^2=4xy\)
Do (x+y-z)2 là bình phương 1 số hữu tỉ => 4xy là bp số hữu tỉ => xy là bp số hữu tỉ
3/ Ta có:
\(x+y+z=0\)
\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Ta có:
\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)
\(=-ax^2-by^2-cz^2\)
\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Leftrightarrow ax^2+by^2+cz^2=0\)
1/ Đặt \(a-b=x,b-c=y,c-z=z\)
\(\Rightarrow x+y+z=0\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
Ta có:
\(\sqrt{x^2+4}=y^2\left(y\in Q\right)\)
\(\Leftrightarrow y^2-x^2=4\)
\(\Leftrightarrow\left(y-x\right)\left(y+x\right)=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-x=a\\y+x=\dfrac{4}{a}\end{matrix}\right.\) \(\left(a\in Q;0< a\le\dfrac{4}{a}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4-a^2}{2a}\\y=\dfrac{4+a^2}{2a}\end{matrix}\right.\)\(\left(a\in Q;0< a\le2\right)\)
Thế ngược lại bài toán ta có:
\(\sqrt{x^2+4}=\sqrt{\left(\dfrac{4-a^2}{2a}\right)^2+4}=\sqrt{\left(\dfrac{4+a^2}{2a}\right)^2}=\dfrac{4+a^2}{2a}\)
Vậy giá trị x cần tìm là: \(x=\dfrac{4-a^2}{2a}\)\(\left(a\in Q;0< a\le2\right)\)
Chỗ đầu tiên là:\(\sqrt{x^2+4}=y\) nhé. Ghi nhầm.