Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: f(0)=-5 <=> d=-5
f(1)=a+b+c+d=4 <=> a+b+c=9 => c=9-a-b
f(2)=8a+4b+2c+d=31 <=> 8a+4b+2c=36 <=> 4a+2b+c=18 <=> 4a+2b+9-a-b=18 <=> 3a+b=9 (1)
f(3)=27a+9b+3c+d=88 <=> 27a+9b+3c=93 <=> 9a+3b+c=31 <=> 9a+3b+9-a-b=31 <=> 8a+2b=22 <=> 4a+b=11 (2)
Trừ (2) cho (1) ta được: a=2
Thay a=2 vào (1), được: b=9-3*2 = 3
=> c=9-2-3 = 4
Đáp số: a=2; b=3; c=4 và d=-5
Hàm số f(x)=2x3+3x2+4x-5
các bn oi giúp mk help me mk cần gấp mai đi hok òi huhuhuhuhu
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Lời giải:
\(\left\{\begin{matrix} f(0)=-5\\ f(1)=9\\ f(2)=31\\ f(3)=88\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a.0^3+b.0^2+c.0+d=-5\\ a.1^3+b.1^2+c.1+d=9\\ a.2^3+b.2^2+c.2+d=31\\ a.3^3+b.3^2+c.3+d=88\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} d=-5\\ a+b+c+d=9\\ 8a+4b+2c+d=31\\ 27a+9b+3c+d=88\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} d=-5\\ a+b+c=14(1)\\ 4a+2b+c=18(2)\\ 9a+3b+c=31(3)\end{matrix}\right.\)
Lấy \((2)-(1)\Rightarrow 3a+b=4(4)\)
Lấy $(3)-(2)\Rightarrow 5a+b=13(5)$
Lấy $(5)-(4)\Rightarrow a=4,5$
$\Rightarrow b=4-3a=-9,5$
$\Rightarrow c=14-a-b=19$
Vậy.........
Không thì từ (1);(2);(3) bạn có thể bấm máy Casio ra nghiệm luôn, vừa nhanh vừa tiện.
Ta có: f(0) = \(a.0^2+b.0+c=4\)
\(\Rightarrow0+0+c=4\Rightarrow c=4\)
\(f\left(1\right)=a.1^2+b.1+c=3\)
\(\Rightarrow a+b+c=3\Rightarrow a+b=-1\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=7\)
\(\Rightarrow a-b+4=7\Rightarrow a-b=3\)
Ta có: \(\left(a+b\right)+\left(a-b\right)=a+a+b-b=2a=-1+3=2\)
\(\Rightarrow a=2:2=1\)
\(\Rightarrow b=-1-1=-2\)
Vậy a=1;b=-2;c=4
Ta có:\(\hept{\begin{cases}f\left(0\right)=4\\f\left(1\right)=3\\f\left(-1\right)=7\end{cases}}\) \(\hept{\begin{cases}c=4\\a+b=3\\a-b=7\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c=4\\a=5\\b=-2\end{cases}}\)
cỡ này Câu hỏi của hoai - Toán lớp 10 | Học trực tuyến