Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: f(0)=-5 <=> d=-5
f(1)=a+b+c+d=4 <=> a+b+c=9 => c=9-a-b
f(2)=8a+4b+2c+d=31 <=> 8a+4b+2c=36 <=> 4a+2b+c=18 <=> 4a+2b+9-a-b=18 <=> 3a+b=9 (1)
f(3)=27a+9b+3c+d=88 <=> 27a+9b+3c=93 <=> 9a+3b+c=31 <=> 9a+3b+9-a-b=31 <=> 8a+2b=22 <=> 4a+b=11 (2)
Trừ (2) cho (1) ta được: a=2
Thay a=2 vào (1), được: b=9-3*2 = 3
=> c=9-2-3 = 4
Đáp số: a=2; b=3; c=4 và d=-5
Hàm số f(x)=2x3+3x2+4x-5
Ko biết là bạn có cần nữa ko.
Nhưng mình vẫn trả lời cho những bạn khác đang cần.
Do P(0) và P(1) lẻ nên ta có:
P(0)=d=> d là số lẻ
P(1)=a+b+c+d => a+b+c+d là số lẻ
Giả sử y là nghiệm nguyên của P(x). Khi đó:
P(y)=ay^3+by^2+cy+d=0
=>ay^3+by^2+cy=-d
Mà d là số lẻ
=>y là số lẻ
Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)
=a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)
=a(y^3-1)+b(y^2-1)+c(y-1)
Do y là số lẻ=>P(y)-P(1) là số chẵn(1)
Mà P(y)-P(1)= 0-a+b+c+d
=-a-b-c-d
Do a+b+c+d lẻ
=>-a-b-c-d lẻ
Hay P(y)-P(1) là số lẻ(2)
Vì (1) và (2) mâu thuẫn
=> Giả sử sai
Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)
Ta có:
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(4\right)=64a+16b+4c+d\)
\(f\left(7\right)=343a+49b+7c+d\)
\(f\left(2\right)=8a+4b+2c+d\)
Xét:
\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)
\(=61a+9b+c=2019\)
Khi đó:
\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)
Vậy ta có đpcm
Lời giải:
\(\left\{\begin{matrix} f(0)=-5\\ f(1)=9\\ f(2)=31\\ f(3)=88\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a.0^3+b.0^2+c.0+d=-5\\ a.1^3+b.1^2+c.1+d=9\\ a.2^3+b.2^2+c.2+d=31\\ a.3^3+b.3^2+c.3+d=88\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} d=-5\\ a+b+c+d=9\\ 8a+4b+2c+d=31\\ 27a+9b+3c+d=88\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} d=-5\\ a+b+c=14(1)\\ 4a+2b+c=18(2)\\ 9a+3b+c=31(3)\end{matrix}\right.\)
Lấy \((2)-(1)\Rightarrow 3a+b=4(4)\)
Lấy $(3)-(2)\Rightarrow 5a+b=13(5)$
Lấy $(5)-(4)\Rightarrow a=4,5$
$\Rightarrow b=4-3a=-9,5$
$\Rightarrow c=14-a-b=19$
Vậy.........
Không thì từ (1);(2);(3) bạn có thể bấm máy Casio ra nghiệm luôn, vừa nhanh vừa tiện.