\(ax^3+bx^2+cx\) +d ,biết f(0)=-5, f(1)=4 ,f(2)=31,f(3)=8...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Ta có: f(0)=-5 <=> d=-5

f(1)=a+b+c+d=4  <=> a+b+c=9 => c=9-a-b

f(2)=8a+4b+2c+d=31  <=> 8a+4b+2c=36  <=> 4a+2b+c=18 <=> 4a+2b+9-a-b=18 <=> 3a+b=9 (1)

f(3)=27a+9b+3c+d=88 <=> 27a+9b+3c=93 <=> 9a+3b+c=31 <=> 9a+3b+9-a-b=31 <=> 8a+2b=22 <=> 4a+b=11 (2)

Trừ (2) cho (1) ta được: a=2

Thay a=2 vào (1), được: b=9-3*2 = 3

=> c=9-2-3 = 4

Đáp số: a=2; b=3; c=4 và d=-5

Hàm số f(x)=2x3+3x2+4x-5

22 tháng 1 2019

các bn oi giúp mk help me mk cần gấp mai đi hok òi huhuhuhuhu

17 tháng 4 2017

Đại số lớp 7

17 tháng 4 2017

cỡ này Câu hỏi của hoai - Toán lớp 10 | Học trực tuyến

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Lời giải:

\(\left\{\begin{matrix} f(0)=-5\\ f(1)=9\\ f(2)=31\\ f(3)=88\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a.0^3+b.0^2+c.0+d=-5\\ a.1^3+b.1^2+c.1+d=9\\ a.2^3+b.2^2+c.2+d=31\\ a.3^3+b.3^2+c.3+d=88\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} d=-5\\ a+b+c+d=9\\ 8a+4b+2c+d=31\\ 27a+9b+3c+d=88\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} d=-5\\ a+b+c=14(1)\\ 4a+2b+c=18(2)\\ 9a+3b+c=31(3)\end{matrix}\right.\)

Lấy \((2)-(1)\Rightarrow 3a+b=4(4)\)

Lấy $(3)-(2)\Rightarrow 5a+b=13(5)$

Lấy $(5)-(4)\Rightarrow a=4,5$

$\Rightarrow b=4-3a=-9,5$

$\Rightarrow c=14-a-b=19$

Vậy.........

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Không thì từ (1);(2);(3) bạn có thể bấm máy Casio ra nghiệm luôn, vừa nhanh vừa tiện.

28 tháng 4 2017

Ta có: f(-2)=16a-8b+4c-2d+e

f(1)=a+b+c+d+e(2)

5a+c=3b+d

=>20a+4c=12b+4d

=>f(-2)=12b+4d-8b-2d-4a+e=4b+2d-4a+e

5a+c=3b+d

=>3b-4a=a+c-d

=>f(-2)=a+b+c+d+e(2)

Từ (1) và (2) => f(-2).f(1)=(a+b+c+d+e)2\(\ge0\)với mọi a,b,c,d,e(đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

14 tháng 4 2016

Gia su :f(x)=0 tai x=1

=>a1^3+b1^2+c1+d=0

hay a+b+c=0       (1)

ma a+b+c=0 (gt)    (2)

Tu1va 2 suyra:x=1 la nghiem cua da thuc f(x)

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!