Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho (6 - x) / 4 = (4x - 5 ) / 3
tìm ra x suy ra được y
thay x và y vào y = kx + k + 1 tìm ra k
Gọi \(y=\frac{6-x}{4}\)và \(y=\frac{4x-5}{3}\)cắt nhau tại A
\(\Rightarrow\frac{6-x}{4}=\frac{4x-5}{3}\)
<=> 18-3x=16x-20
=> x=2 => y=1
=> A(2;1)
\(A\in y=kx+k+1\)nên \(1=k\cdot2+k+1\)
=> k=0
tìm giao điểm của hai cái đầu sau đó thay vào cái cuối cùng để tìm k
hoành đọ giao điểm y=-1/4x+3/2 và y= 4/3x -5/3
; 4/3x -5/3 = -1/4x +3/2
4/3x +1/4 x =5/3 +3/2
19/12 x = 19/6
=> x =2 => y = -1/4 .2 +3/2 = 1 A(2;1)
Để 3 đường thẳng đồng quy tại A
=> k.2 +k +1 = 1
k =0
Bài 2:
Để hai đường thẳng này trùng nhau thì
\(\left\{{}\begin{matrix}k=5-k\\m-2=4-m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2k=5\\2m=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{5}{2}\\m=3\end{matrix}\right.\)
a: Để hai đường thẳng y=(a-1)x+5 và y=(3-a)x+2 song song với nhau thì \(\left\{{}\begin{matrix}a-1=3-a\\5\ne2\left(đúng\right)\end{matrix}\right.\)
=>a-1=3-a
=>2a=4
=>a=2
b: Để hai đường thẳng y=kx+(m-2) và y=(5-k)x+4-m trùng nhau thì \(\left\{{}\begin{matrix}k=5-k\\m-2=4-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2k=5\\2m=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{5}{2}\\m=3\end{matrix}\right.\)
a: Vì \(\left(d\right)\) đi qua \(A\left(1;2\right);B\left(-3;4\right)\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}k+k'-3=2\\-3\left(k-3\right)+k'=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k+k'=5\\-3k+k'=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4k=10\\k+k'=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{2}{5}\\k'=\dfrac{23}{5}\end{matrix}\right.\)