Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Để hai đường thẳng này trùng nhau thì
\(\left\{{}\begin{matrix}k=5-k\\m-2=4-m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2k=5\\2m=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{5}{2}\\m=3\end{matrix}\right.\)
a: Để hai đường trùng nhau thì k-2=6-2k và -2m+5=m-1
=>3k=8 và -3m=-6
=>k=8/3 và m=2
b: Để hai đường song song thì k-2=6-2k và -2m+5<>m-1
=>k=8/3 và m<>2
c: Để hai đường cắt nhau thì k-2<>6-2k
=>k<>8/3
d: Để hai đường cắt nhau trên trục tung thì k-2<>6-2k và -2m+5=m-1
=>m=2 và k<>8/3
e: m=3
=>(d1): y=(k-2)x+2 và (d2): y=(6-2k)x-1
Để hai đường cắt nhau trên trục hoành thì k-2<>6-2k và -2/k-2=1/6-2k
=>k<>8/3 và -12+4k=k-2
=>3k=10 và k<>8/3
=>k=10/3
Hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau khi và chỉ khi k = 5 – k và m – 2 = 4 – m
Ta có: k = 5 – k ⇔ 2k = 5 ⇔ k = 2,5
m – 2 = 4 – m ⇔ 2m = 6 ⇔ m = 3
Vậy với k = 2,5 và m = 3 thì hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau.
Lời giải:
Để hai đường thẳng song song nhau thì:
\(\left\{\begin{matrix} k+3=4\\ m+1\neq 3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m\neq 1\end{matrix}\right.\)
Để hai đt cắt nhau thì: \(\left\{\begin{matrix} k+3\neq 4\\ m\in\mathbb{R}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k\neq 1\\ m\in\mathbb{R}\end{matrix}\right.\)
Để hai đt trùng nhau thì: \(\left\{\begin{matrix} k+3=4\\ m+1=3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m=1\end{matrix}\right.\)
Để hai đt cắt nhau tại 1 điểm trên trục tung thì:
PT hoành độ giao điểm $(k+3)x+m+1=4x+3-m$ nhận $x=0$ là nghiệm
$\Leftrightarrow x(k-1)+(2m-2)=0$ nhận $x=0$ là nghiệm
$\Leftrightarrow 2m-2=0$
$\Leftrightarrow m=1$
Vậy $m=1$ và $k\in\mathbb{R}$ bất kỳ.
Để 2 đt vuông góc thì $(k+3).4=-1$ và $m$ bất kỳ
$\Leftrightarrow k=\frac{-13}{4}$ và $m$ bất kỳ.
b: Để hai đường thẳng song song thì 2m+1=2
hay m=1/2
Hai đường thẳng trùng nhau khi a = a' và b = b' tức là:
2 = 2m + 1 và 3k = 2k – 3
HT
a) Hàm số \(y=2x+3k\) có các hệ số \(a=2,b=3k\)
Hàm số \(y=\left(2m+1\right)x+2k-3\) có các hệ số \(a'=2m+1,b'=2k-3\)
Hai hàm số đã cho là hàm số bậc nhất nên \(2m+1\ne0\)
\(\Leftrightarrow m\ne-\frac{1}{2}\)
Hai đường thẳng song song với nhau khi \(a=a'\) và \(b\ne b'\) tức là:
\(2=2m+1\) và \(3k\ne2k-3\)
Kết hợp với điều kiện trên ta có: \(m=\frac{1}{2}.k\ne-3\)
b) Hai đường thẳng song song:
\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k\ne2k-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k\ne-3\end{cases}}\)
c) Hai đường thẳng trùng nhau:
\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k=2k-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k=-3\end{cases}}\)
a: Để hai đường thẳng y=(a-1)x+5 và y=(3-a)x+2 song song với nhau thì \(\left\{{}\begin{matrix}a-1=3-a\\5\ne2\left(đúng\right)\end{matrix}\right.\)
=>a-1=3-a
=>2a=4
=>a=2
b: Để hai đường thẳng y=kx+(m-2) và y=(5-k)x+4-m trùng nhau thì \(\left\{{}\begin{matrix}k=5-k\\m-2=4-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2k=5\\2m=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{5}{2}\\m=3\end{matrix}\right.\)