K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12

Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)

\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)

Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)

\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)

Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)

\(\Rightarrow b=-2+3.2=4\)

Vậy a= -3; b = 4

4 tháng 11 2019

x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)

Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)

14 tháng 11 2022

a: \(\Leftrightarrow x^4-x^2-3x^3+6x+\left(b+1\right)x^2-b-1+\left(a-6\right)x+2b+1⋮x^2-1\)

=>a-6=0 và 2b+1=0

=>a=6; b=-1/2

b: =2x^2-3x

=2(x^2-3/2x)

=2(x^2-2*x*3/4+9/16-9/16)

=2(x-3/4)^2-9/8>=-9/8

Dấu = xảy ra khi x=3/4

a) \(8x^3-18x^2+x+6\)

\(=8x^3-16x^2-2x^2+4x-3x+6\)

\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(8x^2-2x-3\right)\)

\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)

\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)

\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)

=> g(x) có 3 nghiệm là

x-2=0 <=> x=2

2x+1=0 <=> x=-1/2

4x-3=0 <=> x=3/4

vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}

b) tự làm đi (mk ko bt làm)

30 tháng 11 2017

P (1) = a + b+ c = 0 => a +b = -c (1)
P(-1) = 6 => a - b + c = 6 => a - b = 6 -c (2)
LẤy (1) - (2) = > a + b - a + b = - c - 6 +c => 2b = - 6 => b = - 3
LẤy (1) + (2) ta có: a + b + a - b = -c + 6 - c => 2a = 6 - 2c => a = 3-c
P (-2) = 4a - 2b + c = 4 (3-c) - 2. -3 + c = 3 => 12 - 4c + 6 + c = 3 => 18 -3c = 3 => 3c = 15 => c = 5
a = 3 -c = 3-5 = -2
Vậy a =-2 ; b =-3 ; c= 5

k cho mk nha

16 tháng 11 2019

1) 

Nếu x>1 thì x^2>1; y^2;z^2 cx lớn=1

=> x^2+y^2+z^2>1=> Loại

Nếu x<-1=> x^2>1; y^2;z^2 cx lớn=1

=> x^2+y^2+z^2>1=> Loại

CMTT vs y,z thì -1<=x,y,z<=1

TH1: -1<=x<0

=> x<x^2 do x âm và x^2 dương

CMTT => y<y^2; z<z^2

=> x+y+z<x^2+y^2+z^2

Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2

=> LOẠI.

TH2: 0<=x,y,z<=1

=> x>=x^2; y>=y^2; z>=z^2

=> x+y+z>=x^2+y^2+z^2

Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2

=> ''='' xảy ra <=> x=0 hoặc 1; y=0 hoặc 1; z=0 hoặc 1

=> (x,y,z)=(0;0;1) và các hoán vị

=> A=1.