Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2 - 1 = (x - 1)(x + 1)
Để f(x) \(⋮\) g(x) thì \(f\left(x\right)⋮\left\{{}\begin{matrix}\left(x-1\right)\left(1\right)\\\left(x+1\right)\left(2\right)\end{matrix}\right.\)
Từ (1) => \(f\left(1\right)=0\Rightarrow-2+a+2b=0\) (*)
Từ (2) => \(f\left(-1\right)=0\Rightarrow4+2b-a=0\) (**)
Trừ (*) cho (**) được:
\(-2+a+2b-4-2b+a=0\)
\(\Rightarrow2a-6=0\)
\(\Rightarrow a=3\)
Khi đó b = \(\dfrac{-1}{2}\).
T giải = pp giá trị riêng nhé :v
Gọi đa thức thương của phép chia là đa thức Q(x)
f(x) = x4 - 3x3 + bx2 + ax + b = (x2 - 1) . Q(x)
= (x - 1) (x +1) . Q(x)
* Tại x = 1 Ta có :
12 - 3.13 + b.12 + a.1 + b = 0
1 - 3 + b +a +b = 0
-2 +2b +a = 0
2b+a = 2
2b = 2 - a (1)
* Tại x = -1 Ta có :
(-1)2 - 3. (-1)2 + b.(-1)2 + a. (-1) +b = 0
1 + 3 +b -a+b =0
4 +2b -a = 0
2b -a = -4
2b = -4 +a (2)
Từ (1) và (2) => 2 - a = -4 +a
2 +4 = a+a
2a = 6
=> a = 3
Từ (1) => 2b = 2 -a = 2 - 3 = -1 <=> b = \(\dfrac{-1}{2}\)
Vậy a = 3 ; b = \(\dfrac{-1}{2}\)
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
a: \(\Leftrightarrow x^4-x^2-3x^3+6x+\left(b+1\right)x^2-b-1+\left(a-6\right)x+2b+1⋮x^2-1\)
=>a-6=0 và 2b+1=0
=>a=6; b=-1/2
b: =2x^2-3x
=2(x^2-3/2x)
=2(x^2-2*x*3/4+9/16-9/16)
=2(x-3/4)^2-9/8>=-9/8
Dấu = xảy ra khi x=3/4
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
Đa thức thương có dạng: \(q\left(X\right)=x^2+cx+d\)
Ta có: \(x^4+ax^2+b=\left(x^2-3x+2\right)\left(x^2+cx+d\right)\)
\(=x^4+\left(c-3\right)x^3+\left(d+2-3c\right)x^2+\left(2c-3d\right)x+2d\)
Đồng nhất ta được các hệ số tương ứng bằng nhau:
\(\hept{\begin{cases}c-3=0\\d+2-3c=a\end{cases}}\)
\(\hept{\begin{cases}2c-3d=0\\2d=b\end{cases}}\)
\(\Leftrightarrow a=-5,b=4,c=3,d=2\)
Khi đó: \(q\left(x\right)=x^2+3x+2\)
Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được:
\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)
Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì:
\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).