K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

khó quá

13 tháng 10 2018

Vì \(2x^3+ax+b\)chia x + 1 dư - 6

=> \(2x^3+ax+b=\left(x+1\right)Q-6\)

Với x = -1

\(\Rightarrow-2-a+b=-6\)

\(b-a=-6+2=-4\)(1)

Vì \(2x^3+ax+b\)chia x - 2 dư 21

\(\Rightarrow2x^3+ax+b=\left(x-2\right)f\left(x\right)+21\)

Với x = 2

\(16+2a+b=21\)

\(2a+b=5\)(2)

Từ (1) và (2) => a - b = 4 =>a=4+b; 2a +b = 5=>8+2b+b=5=>3b=-3<=> b = -1

=> a = 4-1=3

13 tháng 8 2015

a) x^4 - x^3 + ax + b chia  cho x^2 -x - 2 dư 2x - 3 

=> x^4 - x^3 + ax + b = ( x^2 - x - 2 ) q(x) + 2x - 3 

=> x^4 - x^3 + ax + b = (  x + 1 )(x- 2 ) q(x) + 2x - 3 

Thay x = 2 ta có :

       2^4 - 2^3 + 2a + b = 0 + 2.2 - 3

        16  - 8 + 2a + b = 1

          8 + 2a + b = 1 

               2a + b     = -7 => b = -7 - 2a 

Thay x = -1 ta có :

           (-1)^4 - (-1)^3 + (-1).a + b = 0 + 2(-1) - 3

            1 + 1 - a + b                = -2 - 3

                2 - a + b                = -5

                  -a + b                  = - 7 

Thay b = -7 - 2 a ta có :

                  -a + -7 - 2a             = -7

                     -3a - 7                  = -7

                        -a                        = 0

                         a = 0 

b = - 7 -2a = -7 - 0 = -7 

Vậy a = 0 ; b = -7 

 

9 tháng 4 2020

\(f(x) = 2x^3 + ax + b\)

Gọi \(f(x) = 2x^3 + ax+b = (x+1).Q(x) + 6 \)  (1)

\(f(x) = 2x^3 + ax + b = (x-2).H(x) + 21\)  (2)

Thay x = -1 vào (1) ta được : 

\(-2 - a + b = 6 => b-a = 8\)  (3)

Thay x = 2 vào (2) ta được : 

\(16+2a+b=21 => 2a + b = 5\)  (4)

Từ (3) và (4) \(=> b-a - 2a - b = 8-5 \)

\(=> -3a = 3 <=> a = -1 => b = 7\)

10 tháng 12 2017

Bài 1: 
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12. 
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.

b, a=-2 
c,a=-20 

Bài2.Xác định a và b sao cho 
a)x^4+ax^2+1 chia hết cho x^2+x+1 
b)ax^3+bx-24 chia hết cho (x+1)(x+3) 
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3 
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21

Giải

a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2) 
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p) 
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi) 
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p 
Đồng nhất hệ số, ta có: 
m = 1 
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0) 
n + p = a 
n + p =0 
p = 1 
=>n = -1 và n + p = -1 + 1 = 0 = a 
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1 
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d: 
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21 

b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0 
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**) 
giải hệ (*), (**) trên ta được a= 2; b=-26 

c) f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21 
f(-1) = -6 ---> -2-a+b =-6 (*) 
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**) 
Giải hệ (*); (**) trên ta được a=3; b=-1

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

Theo định lý Bezout về phép chia đa thức thì số dư của \(f(x)=2x^3+ax+b\) cho \(x+1\)\(x-2\) lần lượt là \(f(-1)\)\(f(2)\)

Do đó:

\(\left\{\begin{matrix} f(-1)=-2-a+b=-6\\ f(2)=16+2a+b=21\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} -a+b=-4\\ 2a+b=5\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=3\\ b=-1\end{matrix}\right.\)

14 tháng 10 2017

Bài b :

Gọi \(P\left(x\right)=2x^3+ax+b\)

Theo đề bài ta có hệ phương trình :

\(\left\{{}\begin{matrix}P\left(-1\right)=-2-a+b=-6\\P\left(2\right)=16+2a+b=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=-4\\2a+b=5\end{matrix}\right.\)

\(\)\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

Vậy ................