Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có 2 nghiệm x1,x2
\(\Leftrightarrow\Delta=\left(m-2\right)^2-4\cdot\left(-2m\right)\ge0\)
\(\Leftrightarrow m^2-4m+4+8m\ge0\)
\(\Leftrightarrow\left(m+2\right)^2\ge0\) (luôn đúng)
Theo định lí Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)
Kết hợp định lí Vi-ét và đề bài ta có điều kiện:
\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2\left(m-2-x_2\right)+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2m-4-2x_2+3x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=4-2m\end{matrix}\right.\)
Cũng theo Vi-ét:
\(x_1x_2=-2m\) \(\Rightarrow\left(3m-6\right)\left(4-2m\right)=-2m\)
\(\Rightarrow-6m^2+26m-24=0\)
\(\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(m\in\left\{3;\dfrac{4}{3}\right\}\) thỏa mãn đề
Tick nha 😘
\(\Delta=\left(m-2\right)^2+8m=\left(m+2\right)^2\ge0;\forall m\Rightarrow\) phương trình đã cho luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)
Kết hợp hệ thức Viet và điều kiện đề bài ta được:
\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=2m-4\\2x_1+3x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=-2m+4\end{matrix}\right.\)
Thế vào \(x_1x_2=-2m\)
\(\Rightarrow\left(3m-6\right)\left(-2m+4\right)=-2m\)
\(\Leftrightarrow-6m^2+26m-24=0\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)
Xét phương trình \(x^2-2\left(m+1\right)x+4m-3=0\) (1) là phương trình bậc hai một ẩn
Có \(\Delta'=m^2-2m+4>0\)nên phương trình (1) luôn có 2 nghiệm phân biệt \(x_1,x_2\)
Áp dụng ĐL Vi-et có: \(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=4m-3\end{cases}}\)
Ta có: \(2x_1+x_2=5\Leftrightarrow x_1=5-\left(x_1+x_2\right)\Rightarrow x_1=5-\left(2m+2\right)=3-2m\)
Giả sử: \(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=2m+2+\sqrt{m^2-2m+4}\)
Khi đó: \(2m+2+\sqrt{m^2-2m+4}=3-2m\)\(\Leftrightarrow\sqrt{m^2-2m+4}=1-4m\)
\(\Leftrightarrow\hept{\begin{cases}m\le\frac{1}{4}\\5m^2-2m-1=0\end{cases}}\Leftrightarrow m\le\frac{1}{4}\) và \(\orbr{\begin{cases}m=\frac{1+\sqrt{6}}{5}\left(l\right)\\m=\frac{1-\sqrt{6}}{5}\left(c\right)\end{cases}}\)
Giả sử \(x_1=\frac{-b'-\sqrt{\Delta'}}{a}=2m+2-\sqrt{m^2-2m+4}\)
Khi đó: \(\sqrt{m^2-2m+4}=4m-1\)(Giải tương tự)
Vậy \(m=\frac{1-\sqrt{6}}{5}\) thỏa mãn đề.
\(x^2-\left(m+5\right)x-m+6=0\)
có: \(\Delta=\left(m+5\right)^2-4\left(-m+6\right)=m^2+14m+1\)
Điều kiện để phương trình có hai nghiệm là: \(\Delta\ge0\Leftrightarrow m^2+14m+1\ge0\left(@@\right)\)
Áp dụng định lí vi et: \(\hept{\begin{cases}x_1+x_2=m+5\\x_1x_2=-m+6\end{cases}}\)
mà \(2x_1+3x_2=13\Rightarrow2\left(m+5\right)+x_2=13\)
<=> \(x_2=3-2m\)
=> \(x_1=m+5-x_2=m+5-\left(3-2m\right)=3m+2\)
Vì \(x_1x_2=-m+6\) nên ta có phương trình:
\(\left(3-2m\right)\left(3m+2\right)=-m+6\)
<=> \(-6m^2+6m=0\)
<=> \(\orbr{\begin{cases}m=0\\m=1\end{cases}}\)thay vào thỏa mãn (@@)
Vậy m = 0 hoặc m = 1.
dầu tiên bn tìm đenta phẩy
sau đó cm nó lớn hơn 0
theo hệ thức viet tính đc x1+x2=... và x1*x2=....
thay vào hệ thức đã cho tính đc ..
Để pt có 2 nghiệm \(\Delta\ge0\Leftrightarrow m^2+14m+1\ge0\Leftrightarrow\left[\frac{m\ge-7+4\sqrt{3}}{m\le-7-4\sqrt{3}}\right]\)
Theo hệ thức Vi-ét và kết hợp với giả thiết, ta có hệ sau:
\(\hept{\begin{cases}x_1+x_2=m+5\\x_1x_2=6-m\\2x_1+3x_1=7\end{cases}}\)
Từ pt đầu và pt cuối, ta suy ra:
\(\hept{\begin{cases}x_1=3m+2\\x_2=3-2m\end{cases}}\)
Thay vào pt giữa, ta được:
\(\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow m\left(m-1\right)\Leftrightarrow\left[\frac{m=0\left(TMĐK\right)}{m=1\left(TMĐK\right)}\right]\)
bạn mình mớiOoO_Nhok_Lạnh_Lùng_OoO sao chép được cái trái tim của bạn
0 biết
không biết thì thôi aj mượn tl