K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1 2023

Lời giải:

Nếu $p,q$ đều lẻ thì $p-q, p+q$ đều chẵn.

$p-q, p+q$ đều là số nguyên tố khi mà $p-q=p+q=2$

$\Rightarrow q=0$ (vô lý) - loại

Do đó trong 2 số $p,q$ tồn tại ít nhất 1 số chẵn (là 2), số còn lại lẻ. Hiển nhiên do $p-q>0$ nên $p>q$. Do đó $q=2$ còn $p$ là số nguyên tố lẻ.

$p+q=p+2$

$p-q=p-2$

Nếu $p$ chia hết cho $3$ thì $p=3$. Khi đó $p-q=3-2=1$ không là snt (loại)

Nếu $p$ chia 3 dư 1 thì $p+2$ chia hết cho 3.

$\Rightarrow p+2=3\Rightarrow p=1$ (vô lý - loại)

Nếu $p$ chia 3 dư 2 thì $p-2$ chia hết cho 3

$\Rightarrow p-2=3$

$\Rightarrow p=5$. Khi đó: $p+2=5+2=7$ là số nguyên tố (thỏa mãn)

Vậy $(p,q)=(5,2)$

3 tháng 4 2017

Vai trò của p,q,r là như nhau nên giả sử như sau:p<q<r

Xét p=2, ta tìm được 3 số là:2;3;5(ko thỏa mãn)

Xét p=3,ta tìm được 3 số là:3;5;7(thỏa mãn)

Xét p>3

Bổ đề:Mọi số nguyên tố>3nên xem bình phương lên thì luôn chia 3 dư 1 thật vậy các số nguyên tố lớn hơn 3 nên có dạng:3k+1hoặc 3k+2

Nếu có dạng 3k+1,ta có: (3k+1)2=9k2+6k+1_1(mod3)

Nếu có dạng 3k+2 ,ta có:(3k+2)2=9k2+12k+4_1 (mod3)

Vậy nếu p>3 thì các số q,r>3 nên khi bình phương lên thì đều dư 1

==>p2+q2+r2=0(mod3)

Vậy ta có:(3,5,7)và các hoán vị

24 tháng 1 2019

bạn lương đúng rồi

p=2 không thỏa mãn

p=3 thỏa mãn đề bài

Với p>3 p4+2≡0(mod3)p4+2≡0(mod3) là hợp số 

Vậy p= 3

9 tháng 7 2019

+) Xét p = 2 thì \(p^4+2=2^4+2=18\)(loại vì không là số nguyên tố)

+) Xét p = 3 thì \(p^4+2=3^4+2=83\)(là số nguyên tố)

+) Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2.\(\left(k\inℕ^∗\right)\)

   *) Nếu p = 3k + 1 thì \(p^4+2=\left(3k+1\right)^4+2=81k^4+108k^3+54k^2+12k+3⋮3\)(loại)

  *) Nếu p = 3k + 2 thì \(p^4+2=\left(3k+2\right)^4+2=81k^4+216k^3+216k^2+96k+18⋮3\)(loại)

Vậy p = 3

1 tháng 4 2019

Ta có:Với p=2 suy ra p4+2=24+2=18(là HS)

Với p=3 suy ra p4+2=83(là SNT)

Với p>3 suy ra p có 2 dạng:3k+1;3k+2.

Với p=3k+1 suy ra:\(\left(3k+1\right)^4+2=\left[\left(3k\right)^4+4\left(3k\right)^3+6\left(3k\right)^2+4\cdot3k+1\right]+2=\left(3k\right)^4+4\left(3k\right)^3+6\left(3k\right)^2+4\cdot3k+3⋮3\)

Với p=3k+2 suy ra:\(\left(3k+2\right)^4+2=\left(3k\right)^4+4\cdot\left(3k\right)^3\cdot2+6\left(3k\right)^2\cdot2^2+4\cdot3k\cdot2^3+2^4+2=\left(3k\right)^4+4\left(3k\right)^3\cdot2+6\left(3k\right)^2\cdot2^2+4\cdot3k\cdot2^3+18⋮3\)Vậy p=3 thỏa mãn đề bài.

16 tháng 4 2017

p=2

=>3p^2+1, 24p^2+1 là số nguyên tố

p>2

mà p là snt

=>p là số lẻ

=>3p^2+1 là số chẵn >2

=>3p^2+1 là hợp số(vô lý)

Vậy p=2