K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

1 số chính phương khi chia cho 3 dư 1 \(\Rightarrow\)  p2 - q2 + r2 - s2 ⋮ 3

1 số chính phương khi chia cho 8 dư 0, 1 hoặc 4 mà p, q, r, s là số nguyên tố lớn hơn 3 nên  p2 , q2 , r2 ,s2  chia 8 dư 1 (1 số lẻ chia cho 1 số chẵn thì số dư của nó là số lẻ) suy ra p2 - q2 + r2 - s2 ⋮8

Suy ra p2 - q2 + r2 - s2 ⋮24

Trả lời:

undefined

HT nhoa^^

@Min Lin Zin :333

3 tháng 4 2017

Vai trò của p,q,r là như nhau nên giả sử như sau:p<q<r

Xét p=2, ta tìm được 3 số là:2;3;5(ko thỏa mãn)

Xét p=3,ta tìm được 3 số là:3;5;7(thỏa mãn)

Xét p>3

Bổ đề:Mọi số nguyên tố>3nên xem bình phương lên thì luôn chia 3 dư 1 thật vậy các số nguyên tố lớn hơn 3 nên có dạng:3k+1hoặc 3k+2

Nếu có dạng 3k+1,ta có: (3k+1)2=9k2+6k+1_1(mod3)

Nếu có dạng 3k+2 ,ta có:(3k+2)2=9k2+12k+4_1 (mod3)

Vậy nếu p>3 thì các số q,r>3 nên khi bình phương lên thì đều dư 1

==>p2+q2+r2=0(mod3)

Vậy ta có:(3,5,7)và các hoán vị

24 tháng 1 2019

bạn lương đúng rồi

23 tháng 9 2019

- Vì p > q > r nên : p^2 + q^2 > 2

Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .

=> p^2 ; q^2 ; r^2 là các số lẻ

=> p ; q ; r là các số nguyên tố lẻ

- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)

=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )

= > q = 5 , r = 7

23 tháng 9 2019

giải

- Vì p > q > r nên : p^2 + q^2 > 2

Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .

=> p^2 ; q^2 ; r^2 là các số lẻ

=> p ; q ; r là các số nguyên tố lẻ

- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)

=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )

= > q = 5 , r = 7

5 tháng 7 2017

a, 2n-3 chia hết cho n+1

=>2(n+1) - 5 chia hết cho n+1

=>5 chia hết cho n+1. Từ đó tìm dc n

b, <=> 5(x+y)=xy

<=>(x-5)(y-5)=25. Đây là pt tích từ đó tìm đc x,y

c, Từ gt =>5^b chia hết cho 5^c

=>a^3+3a^2+5 chia hết cho a+3

=>5 chia hết cho a+3 =>a=2=>c=1=>b=2

5 tháng 7 2017

tìm m để pt sau có 4 nghiệm phân biệt

(x-2)(x-3)(x+4)(x-5)=m​

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

3 tháng 2 2017

291=(213)7=81927

535=(55)7=31257

mà 8192>3125=>81927>31257

=>291>535

k nha