K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

Thử a từ 1 đến 3 ko thỏa mãn!

*) a=4 thì đúng.

*) Xét a>4 thì các số đó đều lớn hơn 5.

Xét số dư khi chia a cho 5:

+) Dư 1 thì a+9⋮5

+) Dư 2 thì a+13⋮5

+) Dư 3 thì a+7⋮5

+) Dư 4 thì n+1⋮5

+) Dư 0 thì a+15⋮5    

Ko thỏa mãn TH nào!!!

Vậy a=4

Tích cho  mình để ủng hộ tinh thần nha

20 tháng 11 2015

xin lỗi mk mới học lớp 6

20 tháng 1 2016

Giải chi tiết thì tui mới tickk

 

20 tháng 1 2016

Xét a=2 -> a+7=2+7=9 -> loại
Xét a>2 => a lẻ
=> a+1;a+3;a+7;...;a+15 chẵn và a+1;a+3;a+7;...;a+15 >2-> là hợp số
Vậy a thuộc rỗng

tìm a nguyên biết (a^2-1)(a^2-4)(a^2-7)(a^2-10)<0

26 tháng 6 2023

`a2018` là `a^2018` hay `2018.a`

26 tháng 6 2023

a^2008 ạ

 

31 tháng 10 2021

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

31 tháng 10 2021

\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)

25 tháng 10 2020

thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)

có bổ đề SCP LẺ chia 8 dư 1 do đó:

trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)

25 tháng 10 2020

\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)

\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)

thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)

đến đây thì đơn giản

8 tháng 7 2019

ĐKXĐ: \(a\ge0,a\ne9\)

a)\(P=\frac{2\sqrt{a}}{\sqrt{a}+3}+\frac{\sqrt{a}+1}{\sqrt{a}-3}+\frac{3+7\sqrt{a}}{9-a}.\)

\(=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3+7\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)+\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)-\left(3+7\sqrt{a}\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{2a-6\sqrt{a}+a+3\sqrt{a}+\sqrt{a}+3-3-7\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{3a-9\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}=\frac{3\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{3\sqrt{a}}{\sqrt{a}+3}\)

b) Để P<1 hay \(\frac{3\sqrt{a}}{\sqrt{a}+3}< 1\Leftrightarrow3\sqrt{a}< \sqrt{a}+3\Leftrightarrow\sqrt{a}< \frac{3}{2}\Leftrightarrow0\le a< \frac{9}{4}\)(thỏa mãn ĐKXĐ)

Vậy với \(0\le a< \frac{9}{4}\)thì P<1.

(p/s đừng ti ck cho câu trả lời này)

16 tháng 8 2015

Hợp Lê nhờ giải gúp bài tập mà sao bạn lại mún làm quen Nguyễn Mai Linh Chi

9 tháng 11 2019

\(A=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11}{\left(\sqrt{x}+3\right)(\sqrt{x}-1)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{37\sqrt{x}-5x-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)