K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

ĐKXĐ: \(a\ge0,a\ne9\)

a)\(P=\frac{2\sqrt{a}}{\sqrt{a}+3}+\frac{\sqrt{a}+1}{\sqrt{a}-3}+\frac{3+7\sqrt{a}}{9-a}.\)

\(=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3+7\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)+\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)-\left(3+7\sqrt{a}\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{2a-6\sqrt{a}+a+3\sqrt{a}+\sqrt{a}+3-3-7\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{3a-9\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}=\frac{3\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{3\sqrt{a}}{\sqrt{a}+3}\)

b) Để P<1 hay \(\frac{3\sqrt{a}}{\sqrt{a}+3}< 1\Leftrightarrow3\sqrt{a}< \sqrt{a}+3\Leftrightarrow\sqrt{a}< \frac{3}{2}\Leftrightarrow0\le a< \frac{9}{4}\)(thỏa mãn ĐKXĐ)

Vậy với \(0\le a< \frac{9}{4}\)thì P<1.

(p/s đừng ti ck cho câu trả lời này)

7 tháng 8 2016

Bạn có thể đăng từng bài k như thế nhìn đã sợ ai làm

7 tháng 8 2016

1)đặt nhân tử chung quy đồng là xong

2)phân tích x+2cănx-3=(1-cănx)(3+cănx)

3)2a+căn a đặt căn a ra r rút gọn

30 tháng 11 2019

a ) \(ĐKXĐ\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2+\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x-3}\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

30 tháng 11 2019

b ) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\)

\(\Leftrightarrow\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\frac{4}{\sqrt{x}-3}< 0\)

\(\sqrt{x}-3< 0\)

\(\Leftrightarrow x< 9\)

Vậy với \(0\le x\le9;x\ne4\) thì ...

Chúc bạn học tốt !!!

7 tháng 7 2017

a. ĐK \(\hept{\begin{cases}a\ge0\\a\ne4\\a\ne9\end{cases}}\)

P=\(\frac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{2\sqrt{a}-9-a+9+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)

b. P = \(\frac{\sqrt{a}+1}{\sqrt{a}-3}=1+\frac{4}{\sqrt{a}-3}\)

P nguyên \(\sqrt{a}-3\inƯ\left(4\right)\Rightarrow\sqrt{a}-3\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow\sqrt{a}\in\left\{1;2;4;5;7\right\}\Rightarrow a\in\left\{1;4;16;25;49\right\}\)

c. \(P< 1\Rightarrow P-1< 0\Rightarrow\frac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\Rightarrow\frac{4}{\sqrt{a}-3}< 0\)

\(\Rightarrow0\le a< 9\)và \(a\ne4\)

13 tháng 7 2019

giải giúp mình bài này ới ạ mình đng cần gấp 

Cho biểu thức 

c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2

13 tháng 7 2019

a)

 \(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)

\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{-2a-3}{a-9}\)

b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)

\(\Rightarrow3\left(-2a-3\right)=a-9\)

\(\Rightarrow-6a-9=a-9\)

\(\Rightarrow-6a-a=-9+9\)

\(\Rightarrow-7a=0\left(L\right)\)

Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)

25 tháng 7 2017

a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

b. \(Q=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

c. Để \(Q< 1\Rightarrow Q-1< 0\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)

Vậy \(0\le x< 9\)thì \(Q< 1\)

a: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b: Để A<1 thì A-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

=>0<x<9

1 tháng 8 2017

ĐK \(\hept{\begin{cases}x\ge0\\x\ne4;x\ne9\end{cases}}\)

a. Ta có \(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b. Để \(A< 1\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Rightarrow\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\Rightarrow\frac{4}{\sqrt{x}-3}< 0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)

Kết hợp đk thì \(0\le x< 9\)và \(x\ne4\)thì \(A< 1\)

14 tháng 8 2017

\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{x-2}-\frac{2\sqrt{x}+1}{3\sqrt{x}}\)