Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (-x2 +6x3 - 26x + 21) : (3-2x)
= -3x2 + 5x + 11/2 ( dư 37/1/2)
b) (2x4 - 13x3 - 15 + 5x + 21x2) : (4x-x2 -3)
= -2x2 + 5x + 5
a: \(=\dfrac{x\left(x^2+x-2\right)}{x+2}=\dfrac{x\left(x+2\right)\left(x-1\right)}{x+2}=x^2-x\)
b: \(=\dfrac{x^3-3x^2+2x+24}{x+2}=\dfrac{x^3+2x^2-5x^2-10x+12x+24}{x+2}=x^2-5x+12\)
2x^4 + 2x^3 + 3x^2 - 5x - 20 x^2 + x + 4 2x^2 - 5 2x^4 + 2x^3 + 8x^2 -5x^2 - 5x - 20 -5x^2 - 5x - 20 0
Vậy \(\left(2x^4+2x^3+3x^2-5x-20\right):\left(x^2+x+4\right)=2x^2-5\)
1) \(-6x^4+4x^3-2x^2\)
2) \(=x^2+4x-21-x^2-4x+5=-16\)
3) \(=6x^2-4x-x^2-4x-4=5x^2-8x-4\)
4) \(=2x^3-4x^2-8x-3x^2+6x+12=2x^3-7x^2-2x+12\)
\(\left[\left(3-x\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2\right]:\left(x^2-6x+9\right)=\left[\left(3-x\right)^5-7\left(3-x\right)^4-4\left(3-x\right)^2\right]:\left(3-x\right)^2=\left(3-x\right)^2\left[\left(3-x\right)^3-7\left(3-x\right)^2-4\right]:\left(3-x\right)^2=\left(3-x\right)^3-7\left(3-x\right)^2-4=27-27x+9x^2-x^3-63+42x-7x^2-4=-x^3+2x^2+15x-40\)
\(\dfrac{\left(3-x\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2}{x^2-6x+9}\)
\(=\dfrac{-\left(x-3\right)^5-7\left(x-3\right)^4-4\left(x-3\right)^2}{\left(x-3\right)^2}\)
\(=-\left(x-3\right)^3-7\left(x-3\right)^2-4\)
\(\left(x^3-2x^2+x+4\right):\left(x+1\right)\)
\(=\left(x^3-3x^2+4x+x^2-3x+4\right):\left(x+1\right)\)
\(=\left[x\left(x^2-3x+4\right)+\left(x^2-3x+4\right)\right]:\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-3x+4\right):\left(x+1\right)\)
\(=x^2-3x+4\)
Ta có phép chia