Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(3x^4-3x^3+x^3-x^2+8x^2-8x+9x-9\right):\left(x-1\right)\\ =\left(x-1\right)\left(3x^3+x^2+8x+9\right):\left(x-1\right)\\ =3x^3+x^2+8x+9\)
Bài 1:
\(=\dfrac{x^3-x^2+x+3}{x+1}\)
\(=\dfrac{x^3+x^2-2x^2-2x+3x+3}{x+1}\)
\(=x^2-2x+3\)
2x^4 + 2x^3 + 3x^2 - 5x - 20 x^2 + x + 4 2x^2 - 5 2x^4 + 2x^3 + 8x^2 -5x^2 - 5x - 20 -5x^2 - 5x - 20 0
Vậy \(\left(2x^4+2x^3+3x^2-5x-20\right):\left(x^2+x+4\right)=2x^2-5\)
1) \(\Leftrightarrow\left(x-4\right)\left(x+4\right)-x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4-x\right)=0\)
\(\Leftrightarrow\left(x-4\right)4=0\)
\(\Leftrightarrow x=4\)
2) \(\left(x+3\right)^2-\left(x-3\right)\left(x+5\right)=x^2+6x+9-x^2-2x+15=4x+24\)
3) \(2x^3+3x^2-2x+a=2x^2\left(x-2\right)+7x\left(x-2\right)+16\left(x-2\right)+32+a\)
Để \(2x^3+3x^2-2x+a⋮x-2\) thì \(32+a=0\Leftrightarrow a=-32\)
1.
x2 - 16 - x(x - 4) = 0
<=> (x2 - 42) - x(x - 4) = 0
<=> (x - 4)(x + 4) - x(x - 4) = 0
<=> (x + 4 - x)(x + 4) = 0
<=> 4(x + 4) = 0
<=> x + 4 = 0
<=> x = -4
2.
(x + 3)2 - (x - 3)(x + 5)
= x2 + 6x + 9 - (x2 + 5x - 3x - 15)
= x2 + 6x + 9 - x2 + 5x - 3x - 15
= x2 - x2 + 6x + 5x - 3x + 9 - 15
= 8x - 6
\(\left(x^3-2x^2+x+4\right):\left(x+1\right)\)
\(=\left(x^3-3x^2+4x+x^2-3x+4\right):\left(x+1\right)\)
\(=\left[x\left(x^2-3x+4\right)+\left(x^2-3x+4\right)\right]:\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-3x+4\right):\left(x+1\right)\)
\(=x^2-3x+4\)
bn có thể làm chia bình thường đc ko ạ