K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(8x^2+30x+7\)

\(=8x^2+28x+2x+7\)

\(=4x\left(2x+7\right)+\left(2x+7\right)\)

\(=\left(2x+7\right)\left(4x+1\right)\)

b) Ta có: \(4x^3-12x^2+9x\)

\(=x\left(4x^2-12x+9\right)\)

\(=x\left(2x-3\right)^2\)

c) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=\left(x+2\right)\cdot3x\)

d) Ta có: \(ab+c^2-ac-bc\)

\(=\left(ab-bc\right)+\left(c^2-ac\right)\)

\(=b\left(a-c\right)+c\left(c-a\right)\)

\(=b\left(a-c\right)-c\left(a-c\right)\)

\(=\left(a-c\right)\left(b-c\right)\)

e) Ta có: \(4x^2-y^2+1-4x\)

\(=\left(4x^2-4x+1\right)-y^2\)

\(=\left(2x-1\right)^2-y^2\)

\(=\left(2x-1-y\right)\left(2x-1+y\right)\)

f) Ta có: \(6x^2-7x-20\)

\(=6x^2-15x+8x-20\)

\(=3x\left(2x-5\right)+4\left(2x-5\right)\)

\(=\left(2x-5\right)\left(3x+4\right)\)

16 tháng 2 2021

\(4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\)\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)

\(ab+c^2-ac-bc=ab-ac-bc+c^2=a\left(b-c\right)-c\left(b-c\right)=\left(b-c\right)\left(a-c\right)\)

\(4x^2-y^2+1-4x=4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-y-1\right)\left(2x+y-1\right)\)

\(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(2x-5\right)\left(3x+4\right)\)

\(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(4x+1\right)\left(2x+7\right)\)

31 tháng 7 2016

a, 4x3 -12x2 + 9x

=x(4x2 -12x + 9)

=x((2x)2 - 2.3.2x + 32)

=x(2x - 3)2

b,ab + c2 -ac - bc

=(ab - ac) + (c2 - bc)

=a(b - c) + c(c - b)

=a(b - c) - c(b - c)

=(a - c)(b - c)

c,4x2 - y2 + 1 - 4x
=((2x)2 - 2.2x + 1) - y2

=(2x - 1)2 - y2

=(2x - y -1)(2x + y - 1) 

d,6x- 7x - 20

= -(-6x2 + 7x + 20)

= -(-6x2 + 11x +10 + 10 - 4x)

= -((3x + 2)(-2x + 5) + 10 - 4x)

= -(3x + 2)(-2x + 5) -10 + 4x

= -(3x + 2)(-2x + 5) - 2(-2x + 5) 

= -(-2x + 5)(3x + 4)

16 tháng 8 2019

d) \(4x^2-9-x\left(2x-3\right)=0\)

\(\Leftrightarrow4x^2-9-2x^2+3x=0\)

\(\Leftrightarrow2x^2+3x-9=0\)

\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)

16 tháng 8 2019

e) \(x^3+5x^2+9x=-45\)

\(\Leftrightarrow x^3+5x^2+9x+45=0\)

\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)

\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)

24: 

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)

\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2

25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)

\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)

\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)

\(\Leftrightarrow x+5=0\)

hay x=-5

25 tháng 8 2023

a) \(x^2+2x+1=\left(x+1\right)^2\)

b) \(x^2+8x+16=\left(x+4\right)^2\)

c) \(x^2+6x+9=\left(x+3\right)^2\)

d) \(4x^2+4x+1=\left(2x+1\right)^2\)

e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)

f) \(4x^2+12x+9=\left(2x+3\right)^2\)

g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)

h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)

25 tháng 8 2023

a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2

b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2

c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2

d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2

d: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{A}\)

hay A=x-2

a: \(=\dfrac{6x^2+9x+8x+12}{2x+3}=\dfrac{3x\left(2x+3\right)+4\left(2x+3\right)}{2x+3}\)

=3x+4

b: \(=\dfrac{5x^2-2x+15x-6}{5x-2}\)

\(=\dfrac{x\left(5x-2\right)+3\left(5x-2\right)}{5x-2}=x+3\)

c: \(=\dfrac{-8x^2+20x+2x-5-10}{2x-5}=-4x+1+\dfrac{-10}{2x-5}\)

d: \(=\dfrac{14x^2-35x+2x-5}{2x-5}=\dfrac{7x\left(2x-5\right)+\left(2x-5\right)}{2x-5}\)

=7x+1

e: \(=\dfrac{2x^3+x^2+6x^2+3x+12x+6}{2x+1}\)

\(=\dfrac{x^2\left(2x+1\right)+3x\left(2x+1\right)+6\left(2x+1\right)}{2x+1}=x^2+3x+6\)

f: \(=\dfrac{x^3-2x^2+6x^2-12x+x-2}{x-2}=x^2+6x+1\)

g: \(=\dfrac{12x^3+6x^2-4x^2-2x+6x+3}{2x+1}=6x^2-2x+3\)