K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Bạn áp dụng định lí pitago vào.

\(CD^2-CB^2=\left(AC^2+AD^2\right)-\left(AB^2+AC^2\right)=AD^2-AB^2\)

\(ED^2-EB^2=\left(AD^2+AE^2\right)-\left(AB^2+AE^2\right)=AD^2-AB^2\)

Vậy \(CD^2-CB^2=ED^2-EB^2\)

17 tháng 1 2016

bấm vào chữ Đúng 0 sẽ hiện ra kết quả 

olm-logo.png

23 tháng 1 2015

Xét tam giác ADE là tam giác vuông tại A => DC²= AD²+AC² (định lí Py-ta-go)

      tam giác ABE là tam giác vuông tại A => BE²= AB²+AE²(định lí Py-ta-go)

      tam giác ADE là tam giác vuông tại A => DE²= AD²+AE²(định lí Py-ta-go)

      tam giác ABC là tam giác vuông tại A => BC²= AB²+AC²(định lí Py-ta-go)

Ta có : CD²+ EB² =(AD²+AC²)+(AB²+AE²)

        =>  CD²+ EB² =AD²+AC²+AB²+AE²
        =>  CD²+ EB² =AD²+ AE²+AC²+AB²
        =>  CD²+ EB²= (
AD²+AE²)+(AB²+AC²)

        => CD²+ EB²= ED²+ CB²
        => CD²- CB² = ED²- EB² (dpcm

Xong r đó bạn, đúng đấy ko sai đâu, chép vào ^_^
 


 

 

Áp dụng định lí pytago vào ΔADE vuông tại A, ta được

\(ED^2=AE^2+AD^2\)

Áp dụng định lí pytago vào ΔABE vuông tại A, ta được

\(BE^2=AE^2+AB^2\)

Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(BC^2=AB^2+AC^2\)

Áp dụng định lí pytago vào ΔACD vuông tại A, ta được

\(CD^2=AC^2+AD^2\)

Ta có: \(CD^2+EB^2=\left(AC^2+AD^2\right)+\left(AE^2+AB^2\right)=\left(AD^2+AE^2\right)+\left(AB^2+AC^2\right)=ED^2+CB^2\)

hay \(CD^2-CB^2=ED^2-EB^2\)(đpcm)

20 tháng 2 2020

+ Xét \(\Delta ACD\) vuông tại \(A\left(gt\right)\) có:

\(CD^2=AC^2+AD^2\) (định lí Py - ta - go) (1).

+ Xét \(\Delta ADE\) vuông tại \(A\left(gt\right)\) có:

\(ED^2=AE^2+AD^2\) (định lí Py - ta - go) (2).

+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:

\(CB^2=AC^2+AB^2\) (định lí Py - ta - go) (3).

+ Xét \(\Delta AEB\) vuông tại \(A\left(gt\right)\) có:

\(EB^2=AE^2+AB^2\) (định lí Py - ta - go) (4).

Trừ vế (1) với (3) và trừ vế (2) với (4) ta được:

\(\left\{{}\begin{matrix}CD^2-CB^2=AC^2-AC^2+AD^2-AB^2=AD^2-AB^2\\ED^2-EB^2=AE^2-AE^2+AD^2-AB^2=AD^2-AB^2\end{matrix}\right.\)

\(\Rightarrow CD^2-CB^2=ED^2-EB^2\left(đpcm\right).\)

Chúc bạn học tốt!