Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: trang 73 sách giáo khoa 8 tập 1
Câu 2: trang 73 sách giáo khoa 8 tập 1
Không nhé bạn, đây chỉ là tính chất của hình thang cân thôi
A B C D E
Kéo dài \(DA,CB\)cắt nhau tại \(E\).
Xét tam giác \(CDE\)có:
\(\widehat{EDC}=\widehat{ECD}\)(vì \(ABCD\)là hình thang cân)
suy ra \(\Delta CDE\)cân tại \(E\).
\(\Rightarrow ED=EC\)
\(AB//CD\Rightarrow\widehat{EAB}=\widehat{EDC},\widehat{EBA}=\widehat{ECD}\)(góc đồng vị)
suy ra \(\widehat{EAB}=\widehat{EBA}\)
\(\Rightarrow\Delta EAB\)cân tại \(E\)
\(\Rightarrow EA=EB\)
Suy ra \(ED-EA=EC-EB\Leftrightarrow AD=BC\).
Xét tam giác \(ADC\)và tam giác \(BCD\)có:
\(AD=BC\)
\(\widehat{ADC}=\widehat{BCD}\)
\(CD\)chung
suy ra \(\Delta ADC=\Delta BCD\left(c.g.c\right)\)
\(\Rightarrow AC=BD\)(hai cạnh tương ứng)
vì nếu 2 cạnh ben bằng nhau và 2 cạnh đáy song song (có thể) là hình bình hành
Ta có: OA = OC (gt)
⇒ ∆ OAC cân tại O
⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân) (1)
OB = OD (gt)
⇒ ∆ OBD cân tại O
⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân) (2)
ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh) (3)
Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1
⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)
Suy ra: Tứ giác ACBD là hình thang
Ta có: AB = OA + OB
CD = OC + OD
Mà OA = OC, OB = OD
Suy ra: AB = CD
Vậy hình thang ACBD là hình thang cân.
Vẽ hình thang ABCD nối B với D(AB//CD)
Áp dụng BĐT tam giác ta có:
BD+AB>AD
BD+CD>BC
Trừ vế với vế ta được:
BD+CD-BD-AB>BC-AD
=>CD-AB>BC-AD
=>ĐPCM
a) Ta có: góc Q =góc P
=> AQ = AP ( quan hệ giữa góc và cạnh đối diện)
Ta có: AM + MQ = AQ
AN + NP = AP
Mà MQ = NP ( MNPQ là hình thang cân).
AQ = AP (cmt)
=> AM = AN => tam giác MAN cân tại A.
Câu b bạn tự làm nha
Xét ΔABC có
BE là đường phân giác ứng với cạnh AC
nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\left(1\right)\)
Xét ΔABC có
CD là đường phân giác ứng với cạnh AB
nên \(\dfrac{AD}{DB}=\dfrac{AC}{BC}\left(2\right)\)
Ta có: ΔBAC cân tại A
nên \(AB=AC\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
hay DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
Xét ΔEDC có \(\widehat{EDC}=\widehat{ECD}\left(=\widehat{DCB}\right)\)
nên ΔEDC cân tại E
Suy ra: ED=EC=BD