K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

A,xét tam giác AMB và tam giác DMC , có :

AMB=DMC (đối đỉnh)

DM=AM (gt)

CM=BM (gt)

=> Tam giác AMB = tam giác DMC (c.g.c)

=>BAM=CDM

vì BAM và CDM nằm ở vị trí so le trong và bằng nhau 

=> AB//DC

\(\text{a, Nối BD và DC}\)

Ta co: ΔABC⊥A có M la trung diem cua cạnh huyền BC => AM là trung tuyến

=> AM = BC/2 => AM = MC = MB

mà MD = MA => MA=MD=MC=MB

=> Tứ giac BDCA có 2 đg chéo cat nhau tại trung diem cua mỗi đg

mà tứ giac BDCA có góc A = 90

=> tứ giac BDCA là HCN

=> AB= DC và AB // DC

b, xét △ABC và △CDA co

\(\text{AB = DC ; AC chung;}\widehat{BAC}=\widehat{ACD}=90^0\)

=> △ABC = △CDA (cgc)

c, Ta co: BD = AC ( BDCA là HCN)

mà AC = AE => BD = AE (1)

Ta có: BD // ÁC mà AE là tia đối của AC

=> BD // AE (2)

(1,2) => tứ giac BDAE là HBH

=> BE // AD mà M nằm tren AD => BE//AM

ế, hình bình hành BDAE có 2 đg chéo AB và DE cắt nhau tại trung điểm của mỗi đg

mà O là trug diem cua AB => O cũng là trung diem cua DE => 3 diem D,O,E thẳng hàng

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

7 tháng 3 2020

Bạn tự vẽ hình nha !

Xét \(\Delta ABC\) và \(\Delta ADE\) có: \(AB=AD\left(gt\right)\), \(AC=AE\left(gt\right)\)\(\widehat{BAC}=\widehat{DAE}\)(đối đỉnh)

\(\Rightarrow\Delta BAC=\Delta DAE\left(c.g.c\right)\)\(\Rightarrow\widehat{ABC}=\widehat{ADE}\) và \(BC=DE\)

Mà M,N là trung điểm của BC,DE suy ra BM=DN

Kết hợp với AB=AD ta suy ra \(\Delta ABM=\Delta ADN\left(c.g.c\right)\)\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) suy ra M,A,N thẳng hàng

25 tháng 4 2020

Tự vẽ hình nha bạn :3

Ta có: EAC là góc bẹt 

6 tháng 3 2020

Câu b, c, thôi cx được ạ

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
 Bài 1 . Cho tam giác ABC vuông tại A. Trên cạnh AC lấy các điểm M, N (M nằm giữa A, N). So sánh các độ dài BM, BN, BC.Bài 2    Cho tam giác ABC, điểm M nằm giữa B và C. Gọi H và K là chân các đường vuông góc kẻ từ M đến các đường thẳng AB và AC. So sánh BC và tổng MH + MK.Bài 3    Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên...
Đọc tiếp

 

Bài 1 . Cho tam giác ABC vuông tại A. Trên cạnh AC lấy các điểm M, N (M nằm giữa A, N). So sánh các độ dài BM, BN, BC.

Bài 2    Cho tam giác ABC, điểm M nằm giữa B và C. Gọi H và K là chân các đường vuông góc kẻ từ M đến các đường thẳng AB và AC. So sánh BC và tổng MH + MK.

Bài 3    Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên (cm).

          Bài 4    tam giác ABC, điểm M thuộc cạnh AB.

a) So sánh MC với AM + AC.

b) Chứng minh MB + MC < AB + AC.

- Cộng cùng một số vào hai vế của bất đẳng thức:

a< b => a + c < b + c.

- Cộng từng vế hai bất đẳng thức cùng chiều:

 

          Bài 5      Cho tam giác ABC, điểm M bất kỳ nằm trong tam giác.

a) So sánh MB + MC với BC

b) Chứng minh MA + MB + MC >

Bài 6    Cho ABC có hai đường trung tuyến BD, CE

a) Tính các tỉ số

Bài 7    Cho tam giác ABC có hai đường trung tuyến BP, CQ cắt nhau tại G. Trên tia đối của tia PB lấy điểm E sao cho PE = PG. Trên tia đối của tia QG lấy điểm F sao cho QF = QG. Chứng minh:

 a) GB = GE, GC = GE;            b) EF = BC và EF//BC.

b) Chứng minh BD + CE > BC

Bài 8  Cho ABC. Trên tia đối của tia AB lấy điểm D sao cho

AD = AB. Lấy G thuộc cạnh AC sao cho AG =  AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.

Chứng minh:

a) G là trọng tâm BCD;

b) BED = FDE, từ đó suy ra EC = DF;

c) DMF = CME;

d) B, G, M thẳng hàng.

Bài 9. Cho ABC vuông tại A, AB = 6 cm, AC = 8 cm.

a) Tính BC.

b) Đường thẳng đi qua trung điểm I của BC và vuông góc với BC cắt AC tại D. Chứng minh .

c) Trên tia đối của tia DB lấy điểm E sao cho DE = DC. Chứng minh BCE vuông.

Bài 10  Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh:

a) Chứng minh AB //HK;

b) Chứng minh

c) Chứng minh AKI cân,

Bài 11 Cho có tia phân giác Ot. Trên tia Ot lấy điểm C bất kì. Lấy

A Ox, B Oy sao cho OA = OB. Gọi H là giao điểm của AB và Ot. Chứng minh:

a) CA =  CB và CO là phân giác của ;

b) OC vuông góc với AB tại trung điểm của AB;

c) Biết AB = 6 cm, OA = 5 cm. Tính OH

0
14 tháng 2 2020

A B H M N C I

a, Xét \(\Delta ABH\) và \(\Delta MBH\) ta có:

\(\widehat{AHB}=\widehat{MHB}=90^o,AH=MH,\)  cạnh chung \(BH\)

\(\Rightarrow\Delta ABH=\Delta MBH\left(c.g.c\right)\) ( ĐPCM )

b, Vì \(\Delta ABH=\Delta MBH\Rightarrow AB=MB\) ( 2 cạnh tương ứng )

\(\widehat{ABH}=\widehat{MBH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{ABC}=\widehat{MBC}\)

Xét \(\Delta ABC\) và \(\Delta MBC\) ta có:

\(AB=MB,\widehat{ABC}=\widehat{MBC},\) cạnh chung \(BC\)

\(\Rightarrow\Delta ABC=\Delta MBC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{BMC}\) ( 2 góc tương ứng ) ( ĐPCM )

c, Xét \(\Delta AHI\) và \(\Delta MHI\) ta có:

\(AH=MH,\widehat{AHI}=\widehat{MHI}=90^o,\) cạnh chung \(HI\)

\(\Rightarrow\Delta AHI=\Delta MHI\left(c.g.c\right)\)

\(\Rightarrow AI=MI\) ( cạnh tương ứng ) \(\Rightarrow AI=NI=MI\Rightarrow AI=MI\)

\(\widehat{AIH}=\widehat{MIH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{AIB}=\widehat{MIB}\)(1)

Vì \(\widehat{AIH}\) và \(\widehat{CIN}\) là 2 góc đối đỉnh \(\Rightarrow\widehat{AIB}=\widehat{CIN}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{MIB}=\widehat{AIB}=\widehat{CIN}\Rightarrow\widehat{MIB}=\widehat{CIN}\)

Vì I là trung điểm của BC => BI = CI

Xét \(\Delta BIM\) và \(\Delta CIN\) ta có:

\(BI=CI,\widehat{MIB}=\widehat{CIN},MI=NI\)

\(\Rightarrow\Delta BIM=\Delta CIN\left(c.g.c\right)\)

\(\Rightarrow NC=MB\) ( 2 cạnh tương ứng ) ( ĐPCM )

d, Xét tam giác vuông ABH, theo định lý Py-ta-go ta có:

\(AB^2=AH^2+BH^2\Rightarrow13^2=AH^2+12^2\Rightarrow169=AH^2+144\)

\(\Rightarrow AH^2=169-144=25\Rightarrow AH=\sqrt{25}=5\)

Xét tam giác vuông AHC, theo định lý Py-ta-go ta có: 

\(AC^2=AH^2+CH^2\Rightarrow AC^2=5^2+16^2\Rightarrow AC^2=25+256\)

\(\Rightarrow AC^2=281\Rightarrow AC=\sqrt{281}\)

Vì điểm H nằm giữa điểm B và điểm C \(\Rightarrow BC=AH+CH\Rightarrow BC=12+16\Rightarrow BC=28\)