K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Bài 1 . Cho tam giác ABC vuông tại A. Trên cạnh AC lấy các điểm M, N (M nằm giữa A, N). So sánh các độ dài BM, BN, BC.

Bài 2    Cho tam giác ABC, điểm M nằm giữa B và C. Gọi H và K là chân các đường vuông góc kẻ từ M đến các đường thẳng AB và AC. So sánh BC và tổng MH + MK.

Bài 3    Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên (cm).

          Bài 4    tam giác ABC, điểm M thuộc cạnh AB.

a) So sánh MC với AM + AC.

b) Chứng minh MB + MC < AB + AC.

- Cộng cùng một số vào hai vế của bất đẳng thức:

a< b => a + c < b + c.

- Cộng từng vế hai bất đẳng thức cùng chiều:

 

          Bài 5      Cho tam giác ABC, điểm M bất kỳ nằm trong tam giác.

a) So sánh MB + MC với BC

b) Chứng minh MA + MB + MC >

Bài 6    Cho ABC có hai đường trung tuyến BD, CE

a) Tính các tỉ số

Bài 7    Cho tam giác ABC có hai đường trung tuyến BP, CQ cắt nhau tại G. Trên tia đối của tia PB lấy điểm E sao cho PE = PG. Trên tia đối của tia QG lấy điểm F sao cho QF = QG. Chứng minh:

 a) GB = GE, GC = GE;            b) EF = BC và EF//BC.

b) Chứng minh BD + CE > BC

Bài 8  Cho ABC. Trên tia đối của tia AB lấy điểm D sao cho

AD = AB. Lấy G thuộc cạnh AC sao cho AG =  AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.

Chứng minh:

a) G là trọng tâm BCD;

b) BED = FDE, từ đó suy ra EC = DF;

c) DMF = CME;

d) B, G, M thẳng hàng.

Bài 9. Cho ABC vuông tại A, AB = 6 cm, AC = 8 cm.

a) Tính BC.

b) Đường thẳng đi qua trung điểm I của BC và vuông góc với BC cắt AC tại D. Chứng minh .

c) Trên tia đối của tia DB lấy điểm E sao cho DE = DC. Chứng minh BCE vuông.

Bài 10  Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh:

a) Chứng minh AB //HK;

b) Chứng minh

c) Chứng minh AKI cân,

Bài 11 Cho có tia phân giác Ot. Trên tia Ot lấy điểm C bất kì. Lấy

A Ox, B Oy sao cho OA = OB. Gọi H là giao điểm của AB và Ot. Chứng minh:

a) CA =  CB và CO là phân giác của ;

b) OC vuông góc với AB tại trung điểm của AB;

c) Biết AB = 6 cm, OA = 5 cm. Tính OH

0
21 tháng 4 2020

a) Xét Tam giác AMC. Áp dụng BĐT trong tam giác ta được: MC<AM+AC

b) Ta có: MC<AM+AC

Cộng cả 2 vế với MB: MB+MC<MB+AM+AC

mà MB+MC=AB

=> MB+MC<AB+AC
Học tốt

Bài 3: Cho tam giác ABC (AB < AC). Gọi I là trung điểm của BC. Qua điểm I vẽ đường thẳng vuông góc với BC cắt tia phân giác của tại M.1.    Chứng minh MB = MC.2.    Kẻ MH vuông góc với đường thẳng AB, kẻ MK vuông góc với đường thẳng AC. Chứng minh MH = MK.3.    Chứng minh AC – AB = 2.KC.Bài 4: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.1.   ...
Đọc tiếp

Bài 3Cho tam giác ABC (AB < AC). Gọi I là trung điểm của BC. Qua điểm I vẽ đường thẳng vuông góc với BC cắt tia phân giác của tại M.

1.    Chứng minh MB = MC.

2.    Kẻ MH vuông góc với đường thẳng AB, kẻ MK vuông góc với đường thẳng AC. Chứng minh MH = MK.

3.    Chứng minh AC – AB = 2.KC.

Bài 4: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.

1.    Chứng minh IB = IC.

2.    Lấy M là trung điểm của AI. Chứng minh MB = MC.

3.    Chứng minh AI vuông góc với BC.

Bài 5Cho △ABC. Phân giác góc A và góc B cắt nhau tại I. Kẻ IM ⊥ AB (M∈AB), kẻ IN ⊥ BC (N∈BC), kẻ IQ ⊥ AC (Q∈ AC).

1.    Chứng minh △IMA = △IQA;

2.    Chứng minh IM = IN = IQ.

Bài 6Cho tam giác ABC vuông tại A. Tia phân giác của cắt AC tại D. Kẻ DK vuông góc với BC.

1.    Chứng minh DA = DK.

2.    Kẻ AH vuông góc với BC. Chứng minh tia AK là phân giác của .

Bài 10: Cho tam giác ABC, AH vuông góc với BC, AH = 12cm, AB = 15cm, CH = 16cm.

1.    Tính độ dài BH, AC.

2.    Tam giác ABC là tam giác vuông hay không? Vì sao?

giải nhanh giùm mk

0
Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

4 tháng 5 2019

A B C D K M Q

a) b) cậu biết làm rồi nhé

c) Vì K là trung điểm cạnh BC ( gt )

\(\Rightarrow DK\)là trung tuyến cạnh BC.

 Vì A là trung điểm của BD

\(\Rightarrow AC\)là trung tuyến cạnh BD

mà DK cắt AC tại M 

\(\Rightarrow M\)là trọng tâm của tam giác BCD.

\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)

( BẠN TỰ THAY VÀO NHA )

4 tháng 5 2019

d) Vì tam giác BCD cân ( cmt )

\(\Rightarrow BC=DC\left(đn\right)\)

Mà AC là  trung tuyến của tam giác BCD ( cmt )

\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)

Xét tam giác BCM và tam giác DCM có:

    \(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)

Xét tam giác BMK và tam giác DMQ có:

   \(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\) 

 \(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)

Vì M là trọng tâm của tam giác BCD (cmt)  (4)

 mà DK là trung tuyến của tam giác BCD (cmt)

\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)

\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)

Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0

Câu 1

Ta có : \(\widehat{B}=\widehat{ACB}\)

\(\Rightarrow\widehat{ACB}=75^0\)

\(\Delta HCB\)vuông tại H có :

 \(\widehat{B}+\widehat{HCB}=90^0\)

\(\Rightarrow75^0+\widehat{HCB}=90^0\)

\(\Rightarrow\widehat{HCB}=90^0-75^0\)

\(\Rightarrow\widehat{HCB}=15^0\)

Mà \(\widehat{ACB}=\widehat{HCB}+\widehat{ECD}\)

\(75^0=15^0+\widehat{ECD}\)

\(\Rightarrow60^0=\widehat{ECD}\)

\(\Delta AHC\)là nửa tam giác đều 

=> 2CH=AC

Mà AC=AB ( \(\Delta ABC\)cân tại A )

\(\Rightarrow2CH=AB\left(đpcm\right)\)

( đợi mk hc cách đăng câu tl bằng hình đã ... ) 

cÂU 3 

Theo BĐT trog tam giác

MA+MB>AB

MB+MC>AC

MA+MC>AC

\(\Rightarrow2MA+2MB+2MC>AB+BC+AC\)

\(\Rightarrow MA+MB+MC>\frac{AB+BC+AC}{2}\left(đpcm\right)\)

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DIa/ Chứng minh :∆ DEI = ∆DFIb/ Các góc DIE và góc DIF là những góc gì ?c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB.Từ C kẻ CE ⊥ AD.Chứng minh :a)Tam giác ABD là tam giác đều .b)AH = CE.c)EH // AC .Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm....
Đọc tiếp

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI

a/ Chứng minh :∆ DEI = ∆DFI

b/ Các góc DIE và góc DIF là những góc gì ?

c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.

Bài 2

Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = H
B.Từ C kẻ CE ⊥ A
D.Chứng minh :

a)Tam giác ABD là tam giác đều .

b)AH = CE.

c)EH // AC .

Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC

a. Chứng minh tam giác ABC vuông

b) Chứng minh ΔBCD cân

c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC

Bài 4:

Cho ABC cân tại A,  vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.

a) Chứng minh BH =HC.

b) Tính độ dài BH, AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh rằng A, G, H thẳng hàng.

d) Chứng minh ∠ABG = ∠ACG

Bài 5(3,5 điểm)

Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.

a) Tính AB.

b) Chứng minh BC = BE.

c) Tia BC cắt tia EK tại M. So sánh KM và KE.

d) Chứng minh CE // MA

Bài 6:

Cho  ΔABC  vuông  tại  A, đường  phân  giác  BE. Kẻ  EH  vuông  góc  với  BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Bài 7

Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.

a. Chứng minh: BH = HC.

b. Tính độ dài đoạn AH.

c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = G
D.Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF

d) Chứng minh: DB + DG > AB.

Bài 8

 Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.

a) Vẽ hình và ghi GT – KL ?

b) KH = AC

c) BE là tia phân giác của góc ABC ?

d) AE < EC ?

Bài 9

Cho  ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :

a) ΔBNC =   ΔCMB

b) ΔBKC cân tại K

c) MN // BC

Bài 10  Cho ΔABC cân tại A. Gọi M là trung điểm của A
C.Trên tia đối của tia MB lấy điểm D sao cho DM = BM

a. Chứng minh ΔBMC = ΔDMA. Suy ra AD // BC.

b. Chứng minh ΔACD là tam giác cân.

c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE.

Bài 11  Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 10cm, BC = 12cm.

a) Chứng minh tam giác ABH bằng tam giác ACH.

b) Tính độ dài đoạn thẳng AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh ba điểm A, G, H thẳng hàng.

0