K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

1. Áp dụng định lý  tổng 3 góc vào tam giác ICD , bạn tính được góc ICD +góc IDC = 75 độ

Mà góc BCD = 2 góc ICD và góc ADC = 2 góc IDC nên góc BCD + góc ADC = 2.75 = 150 độ

Xét tứ giác ABCD có: góc A + góc B + góc BCD + góc ADC = 360 độ

                                 góc A + 90 độ + 150 độ = 360 độ

                                 góc A = 120 độ

2. góc C của tứ giác là: 180 độ -130 độ = 50 độ

Chúc bạn học tốt.

16 tháng 7 2019

Hình bạn tự vẽ nhé...

a)

Xét tam giác BAH và tam giác ABC , có :

A^ = H^ = 90O

B^ : góc chung

=> tam giác HAB ~ tam giác ACB ( g.g)

c) 

 ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 122 + 166 = BC2

=> BC2 = 400

=> BC = 20 cm

Vì tam giác ACB ~ tam giác HAB , nên ta có :

 AH/ACAB/BC

=> AH/16=12/20

=> AH = 9,6 cm.

8 tháng 7 2015

a)Ta có: tam giác ABC là tam giác cân tại A.

=> góc B= góc C

Vì BD và CE là phân giác góc B và C

=> góc DBC = góc EBD = góc DCE = góc ECB

Xét tam giác EBC và tam giác DBC có:

góc ECB = góc DBC

góc BCD = góc EBC

Chung cạnh BC

=> tam giác EBC = tam giác DCB( g.c.g)

=> EC = DB

=> tứ giác BECD là hình thang cân (vì có 2 đường chéo bằng nhau)

b) mk chưa biết làm

8 tháng 7 2015

A B C E D

a)Gợi ý:

     Đầu tiên bạn chứng minh BEDC là hình thang, sau đó chứng minh nó là hình thang cân.

Ta có:

góc B = (1800 - Â) : 2 

rồi chứng minh tam giác EAD cân tại A, sau đó   => góc AED = góc B =  (1800 - Â) : 2

=> ED // BC   (2 góc đồng vị)

=> BECD là hình thang   (2 cạnh đối song song với nhau)

mà góc B = góc C   (tam giác ABC cân tại A)

=> BECD là hình thang cân   (2 góc kề 1 đáy bằng nhau)

bài b thì mk chưa học

9 tháng 12 2018

C. \(\left(3x-1\right)^2=\left(1-3x\right)^2\)
Vì ta có \(|3x-1|=|1-3x|\)
\(\Rightarrow\left(3x-1\right)^2=\left(1-3x\right)^2\)

9 tháng 12 2018

Trả lời:

A: Sai

B: Đúng

C: Đúng

D: Sai

#học_tốt

12 tháng 6 2019

BĐT

<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)

<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)

<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)

Khi đó BĐT 

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8

12 tháng 6 2019

Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)