K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 1 2022

Phương trình hoành độ giao điểm:

\(x^2=2\left(m-2\right)x+5\Leftrightarrow x^2-2\left(m-2\right)x-5=0\)

Do \(ac=-5< 0\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu

\(\Rightarrow x_1< 0< x_2\Rightarrow x_2+2>0\)

Theo hệ thức Viet: \(x_1+x_2=2\left(m-2\right)\)

Ta có:

\(\left|x_1\right|-\left|x_2+2\right|=10\)

\(\Leftrightarrow-x_1-x_2-2=10\)

\(\Leftrightarrow-2\left(m-2\right)=12\)

\(\Leftrightarrow m=-4\)

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(a=1;b=-3;c=-m^2+1\)

\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9+4m^2-4=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

16 tháng 5 2022

Nguyễn Lê Phước Thịnh                                                         , mk cần bạn làm cái tìm m cơ!!!

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

7 tháng 2 2022

xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé 

\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)

\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)

\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)

Ta có : a - b + c = 1 + 6 - 7 = 0 

vậy pt có nghiệm x = -1 ; x = 7 

7 tháng 2 2022

a) vì A(-1; 3) thuộc (d) nên:

3 = 2.(-1) - a + 1

<=> 3 = -2 - a + 1

<=> a = 4

b) Lập phương trình hoành độ giao điểm: 

\(2x-a+1=\frac{1}{2}x^2\)

\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)

ta có: \(y_1=\frac{1}{2}x_1^2\)

         \(y_2=\frac{1}{2}x_2^2\)

\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)

\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)

\(\Leftrightarrow10a-a^2+87=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(\text{Δ}=\left(-3\right)^2-4\left(-m^2+1\right)=4m^2-4+9=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

 

23 tháng 5 2022

undefined

23 tháng 5 2022

16 tháng 6 2021

Hoành độ giao điểm của (P) và (d) là nghiệm của PT:

\(x^2=2x+m^2-2m\)

\(\Leftrightarrow x^2-2x-\left(m^2-2m\right)=0\)

\(\Delta^'=\left(-1\right)^2-1\cdot\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\left(\forall m\right)\)

=> PT luôn có nghiệm với mọi m

Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)

Ta có: \(x_1^2+2x_2=3m\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=3m\)

\(\Leftrightarrow\left(x_1^2+x_2^2\right)+x_1x_2=3m\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=3m\)

\(\Leftrightarrow2^2+m^2-2m=3m\)

\(\Leftrightarrow m^2-5m+4=0\)

\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\Rightarrow\orbr{\begin{cases}m=1\\m=4\end{cases}\left(tm\right)}\)

Vậy \(m\in\left\{1;4\right\}\)

b: Phương trình hoành độ giao điểm là:

\(x^2-2\left(m-1\right)x-m^2-2m=0\)

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(-m^2-2m\right)\)

\(=4m^2-8m+4+4m^2+8m=8m^2+4>0\)

Vậy: Phương trình luôn có hai nghiệm phân biệt

\(x_1^2+x_2^2+4x_1x_2=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+2x_1x_2=36\)

\(\Leftrightarrow\left[2\left(m-1\right)\right]^2+2\left(-m^2-2m\right)=36\)

\(\Leftrightarrow4m^2-8m+4-2m^2-4m-36=0\)

\(\Leftrightarrow2m^2-12m-32=0\)

\(\Leftrightarrow\left(m-8\right)\left(m+2\right)=0\)

hay \(m\in\left\{8;-2\right\}\)

1 tháng 1 2022

Nguyễn Lê Phước Thịnh CTV, mk bảo làm câu c mà bạn

7 tháng 1 2019

Hoành độ giao điểm của (d) và (P) là nghiệm của pt

\(kx+\frac{1}{2}=\frac{1}{2}x^2\)

\(\Leftrightarrow x^2-2kx-1=0\left(1\right)\)

Để (d) cắt (P) tại 2 điểm phân biệt thì pt (1) phải có 2 nghiệm phân biệt 

Khi đó: \(\Delta'>0\)

\(\Leftrightarrow k^2+1>0\)(Luôn đúng)

Theo Vi-ét ta có: xA + xB = 2k

                          xA . xB = -1

Vì \(A;B\in\left(P\right)\)

\(\Rightarrow\hept{\begin{cases}y_A=\frac{1}{2}x_A^2\\y_B=\frac{1}{2}x_B^2\end{cases}}\)

Gọi I(xI ; yI) là trung điểm AB

Khi đó: \(x_I=\frac{x_A+x_B}{2}=\frac{2k}{2}=k\)

         \(y_I=\frac{y_A+y_B}{2}=\frac{x^2_A+x_B^2}{4}=\frac{\left(x_A+x_B\right)^2-2x_Ax_B}{4}=\frac{4k^2+2}{4}=k^2+\frac{1}{2}\)

Do đó: \(y_I=x_I^2+\frac{1}{2}\)

Nên I thuộc \(\left(P\right)y=x^2+\frac{1}{2}\)

Vậy ...............

P/S: nếu bạn thắc mắc về \(\left(P\right)=x^2+\frac{1}{2}\)thì mình sẽ giải thích

Ở cấp 2 thì ta chỉ được gặp dạng (P) y = ax2 có đỉnh trùng với gốc tọa độ

Nhưng đây chỉ là dạng đặc biệt của nó thôi . Còn dạng chuẩn là (P) y = ax2 + bx + c . (P) này có đỉnh không trùng với gốc tọa độ