K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

333333000 nhé bạn

2 tháng 2 2016

 S = 1.2 + 2.3 + 3.4 + ... + 999.1000 
<=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 999.1000.3 
xét 3.n.(n + 1) 
= 3n.(n + 1) 
= n.(n + 1)(n + 2 - n + 1) 
= n.(n + 1)(n + 2) - n(n - 1)(n + 1) 
thay vào S được 
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 999.1000.1001 - 998.999.1000 
=> S = 999.1000.1001 ÷ 3 = 333333000

7 tháng 6 2018

\(\frac{\left(1.2\right)^2}{\left(2.3\right)^2}.\frac{\left(3.4\right)^2}{\left(4.5\right)^2}...\frac{\left(999.1000\right)^2}{\left(1000.1001\right)^2}\)

\(=\frac{1^2.2^2}{2^2.3^2}.\frac{3^2.4^2}{4^2.5^2}...\frac{999^2.1000^2}{1000^2.1001^2}\)

\(=\frac{1^2.2^2.3^2.4^2...999^2.1000^2}{2^2.3^2.4^2.5^2...1000^2.1001^2}\)

\(=\frac{1^2}{1001^2}\)

\(=\frac{1}{1001^2}\)

7 tháng 6 2018

\(\frac{\left(1.2\right)^2}{\left(2.3\right)^2}.....\frac{\left(999.1000\right)^2}{\left(1000.1001\right)^2}\)

\(=\frac{1^2.2^2}{2^2.3^2}.....\frac{999^2.1000^2}{1000^2.1001^2}\)

\(=\frac{1^2}{3^2}.\frac{3^2}{5^2}.....\frac{999^2}{1001^2}\)

\(=\frac{1^2}{1001^2}=\frac{1}{1002001}\)

20 tháng 3 2016

Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}\)

\(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)\)

\(=\frac{1}{1}-\frac{1}{1000}\)

\(=\frac{999}{1000}\)

20 tháng 3 2016

1/1.2+1/2.3+1/3.4+...+1/999.1000

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/999-1000

=1/1-1/1000

=999/1000

8 tháng 2 2016

 A = 1.2 + 2.3 + 3.4 + ... + 99.100

 3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-1) +... + 99.100.(101-98)

 3A = 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4 +...+ 99.100.101 - 98.99.100

8 tháng 2 2016

tiếp theo nek : 3A = 99.100.101 - 0.1.2 ( rút gọn nhưng tích giống nhau với nhau)

còn lại bạn tự tính nhé

26 tháng 11 2015

3S = 2.3.(4-1) + 3.4.(5-2)+4.5.(6-3) +....+999.1000.(1001-998)

3S = 2.3.4-1.2.3+3.4.5-2.3.4 +4.5.6-3.4.5+.........+999.1000.1001- 998.999.1000

3S =999.1000.1001 - 1.2.3

S =333.1000.1001- 2= 333332998

30 tháng 1 2020

\(A = 1.2+2.3+3.4+4.5+...+99.100\)

\(3A= 1.2.3+2.3.3+3.4.3+4.5.3+\)\(...+\)

\(99.100.3\)

\(3A = 1.2.3+2.3.(4-1)+3.4. (5-2)+\)

\(4.5. (6-3)+...+99.100. (101-98)\)

\(3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+\)

\(4.5.6-3.4.5+...+99.100.101-98.99.100\)

\(3A = 99 .100 .101\)

\(A = 99 .100 . 101 ÷ 3 \)

\(A = 333300\)

A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 343400

# Học tốt☘️#

3 tháng 7 2018

=>3C=1.2.3+2.3.3+...+99.100.3

= 1.2.(3 - 0) + 2.3.(4 - 1) +...+ 99.100.(101 - 98)

= 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100

= 99.100.101

=>\(C=\frac{99.100.101}{3}=333300\)

3 tháng 7 2018

\(C = 1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3C=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\)\(\left(101-98\right)\)

\(3C=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)\)\(-\left(0.1.2+1.2.3+2.3.4+...+98.99.100\right)\)

\(3C=99.100.101-0.1.2\)

\(3C=999900-0=999900\)

\(C=999900:3\)

\(\Rightarrow C=333300\)

DD
28 tháng 6 2021

\(A=1.2+2.3+3.4+...+9.10\)

\(3A=1.2.3+2.3.3+3.4.3+...+9.10.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+9.10.\left(11-8\right)\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5+...-8.9.10+9.10.11\)

\(=9.10.11\)

\(\Rightarrow A=\frac{9.10.11}{3}=330\)

4 tháng 7 2019

Coppy tại đây

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

https://lop67.tk/hoidap/29614/t%C3%ADnh-a-1-2-2-3-3-4-n-n-1

~Hok tốt~

4 tháng 7 2019

Lời giải:

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
   a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
   a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
   …………………..
   an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
   an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)