Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. Tính các tổng sau:
1. S= 1+2+3+4+.................+98+99+100
S=( 100 - 1 ): 1 + 1 = 100
2. S= 2+4+6+8+.................+996+998
S = ( 998 - 2 ) : 2 + 1 = 499
3. S= 1.2+2.3+3.4+.............+98.99+99.100
S= 1.2 3-0 +2.3 (4-1) +3.4
4. S= 1.2.3+2.3.4+3.4.5+..............+97.98.99+98.99.100
S= (100 -1) + 1 : 1 = 100
5. S= 1+2+3+..........+98+99+100
S=( 100 - 1) + 1 : 1
S= 100
1.S=(1+100)+(2+99)+...(50+51) (Tổng cộng có 50 cặp)
S=101+101+101+...101
S=101 x 50=5050
=>S= 5050
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
a. Áp dụng CT: n.9n+1)/2
=>S=(101.100)/2
b. SSH=(998-2) : 2+1
TBC=(998+2):2
Nhân SSH với TBC => S
c.
Đặt A= 1.2 + 2.3 + 3.4 + ...+ 99.100
3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3A = 99.100.101 3S = 3.33.100.101
A=33.100.101= 333300
d.
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
a. S= 1+2+3+4+.....+98+99+100
S= (100 -1) : 1 + 1 =100
b. S= 2+4+6+8+.....+996+998
S= (998 - 2 ) : 2 + 1 = 499
c. S= 1.2+2.3+3.4+.....+98.99+99.100
Bài này hôm qua đã làm -.- vào thống kê của tôi mà nhìn :)
d. S= 1.2.3+2.3.4+3.4.5+......+97.98.99+98.99.100
S = (1.2.3.2.3.4.5.4.5.6+98.99.100)4
S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+97.98.99+98.99.100
S=101 - 97
S=1.2.3.5.2.4.+2.1.2.3.4.3.4.5.5.6-2.4.5.4.5.6.7-3.4.5.6-3.4.5.6+.......100
S=1.2.3.3.4.5.5.6.7.7.8.9......+97.98.99+98.99.100
S=1.2.3.4.4.3.2.1+2.3.5-2.3.4.5+3.4.5.6.6.7.3.4.5.6+........97.98.99+98.99.100
S= 98.99.100.101
S=98.99.100.\(\frac{101}{4}\)
e. S= 12+22+32+.....982+992+1002
S= 1002 - 992 + 982 -972 +...+ 22- 12
S= (100 - 99) (100+99) (98 - 97) (98+97) +....+(2-1) (2+1)
S=(1+100) 100 :2
s=5050
A = 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-1) +... + 99.100.(101-98)
3A = 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4 +...+ 99.100.101 - 98.99.100
tiếp theo nek : 3A = 99.100.101 - 0.1.2 ( rút gọn nhưng tích giống nhau với nhau)
còn lại bạn tự tính nhé
\(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+90.100\left(101-98\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3A=99.100.101\)
\(\Rightarrow A=\left(99.100.101\right):3\)
\(\Rightarrow A=333300\)
\(B=1.3+2.4+3.5+...+99.101\)
\(\Rightarrow B=1\left(2+1\right)+2\left(3+1\right)+3\left(4+1\right)+...+99\left(100+1\right)\)
\(\Rightarrow B=1.2+1+2.3+2+3.4+3+...+99.100+99\)
\(\Rightarrow B=\left(1.2+2.3+3.4+...+99.100\right)+\left(1+2+3+...+99\right)\)
\(\Rightarrow B=333300+4950\)
\(\Rightarrow B=338250\)
A) Ta có S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = 99.100.101
=> 3S = 999900
=> S = 333300
b) Để A đạt giá trị nhỏ nhất
=> (x - 1)2 nhỏ nhất
mà \(\left(x-1\right)^2\ge0\forall x\)
=> (x - 1)2 = 0 là giá trị nhỏ nhất của (x - 1)2
=> x - 1 = 0
=> x = 1
Vậy khi x = 1 thì A đạt giá trị nhỏ nhất
Để |x + 4| + 1996 đạt giá trị nhỏ nhất
=> |x + 4| nhỏ nhất
mà \(\left|x+4\right|\ge0\forall x\)
=> Giá trị nhỏ nhất của |x + 4| khi |x + 4| = 0
=> x + 4 = 0
=. x = -4
Vậy khi x = -4 thì B đạt GTNN
\(A = 1.2+2.3+3.4+4.5+...+99.100\)
\(3A= 1.2.3+2.3.3+3.4.3+4.5.3+\)\(...+\)
\(99.100.3\)
\(3A = 1.2.3+2.3.(4-1)+3.4. (5-2)+\)
\(4.5. (6-3)+...+99.100. (101-98)\)
\(3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+\)
\(4.5.6-3.4.5+...+99.100.101-98.99.100\)
\(3A = 99 .100 .101\)
\(A = 99 .100 . 101 ÷ 3 \)
\(A = 333300\)
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 343400
# Học tốt☘️#