K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

Ta có: \(A=x-\sqrt{x}+1\)

\(=x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra <=> \(x=\left(\sqrt{x}-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2=\left(\frac{1}{2}\right)^2\)

\(\Leftrightarrow x=\frac{1}{4}\)

Vậy Amin = 3/4 khi x = 1/4 

# Học tốt #

7 tháng 10 2017

ap dung bdt cauchy -schwarz ta co \(\left(x+y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)

          \(\Rightarrow x^2+y^2\ge\frac{2^2}{2}=2\) dau = xay ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}\\x+y=2\end{cases}\Leftrightarrow x=y=1}\)

Câu 2: Cho biểu thức:1) Tìm điều kiện của x để biểu thức A có nghĩa .2) Rút gọn biểu thức A .3) Giải phương trình theo x khi A = -2 .Câu 3: Cho biểu thức:a) Với những giá trị nào của a thì A xác định.b) Rút gọn biểu thức A .c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .Câu 4:a) Rút gọn biểu thức:b) Chứng minh rằng 0 ≤ C < 1Câu 5: Cho biểu thứca) Rút gọn Q.b) Tính giá trị...
Đọc tiếp

Câu 2: Cho biểu thức:

1) Tìm điều kiện của x để biểu thức A có nghĩa .

2) Rút gọn biểu thức A .

3) Giải phương trình theo x khi A = -2 .

Câu 3: Cho biểu thức:

a) Với những giá trị nào của a thì A xác định.

b) Rút gọn biểu thức A .

c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .

Câu 4:

a) Rút gọn biểu thức:

b) Chứng minh rằng 0 ≤ C < 1

Câu 5: Cho biểu thức

a) Rút gọn Q.

b) Tính giá trị của Q khi a = 3 + 2√2.

c) Tìm các giá trị của Q sao cho Q < 0.

Câu 6: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tìm các giá trị của x để P = 6/5.

Câu 7: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tím các giá trị nguyên của x để P có giá trị nguyên.

Câu 8: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị nguyên của x để P có giá trị nguyên.

c) Tìm GTNN của P và giá trị tương ứng của x.

Câu 9: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị của x để P > 0.

c) Tính giá trị của P khi x = 7 - 4√3.

d) Tìm GTLN của P và giá trị tương ứng của x.

2
27 tháng 4 2018

sora béo chưa ghi biểu thức

27 tháng 4 2018

Biểu thức nào hả bn ?

12 tháng 8 2021

\(A=\left|2x+1\right|+5\)

Ta có: \(\left|2x+1\right|\ge0,\forall x\)

\(\Rightarrow\left|2x+1\right|+5\ge5,\forall x\)

Dấu "\(=\)" xảy ra \(\Leftrightarrow\left|2x+1\right|=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy, Giá trih nhỏ nhất\(minA=5\)\(\Leftrightarrow x=\frac{-1}{2}\)

t.ick và chọn câu trả lời của mình nhé

Chúc bạn học tốt!

12 tháng 8 2021

A = |2x - 1| + 5

có |2x - 1| ≥ 0 => |2x - 1| + 5 ≥ 5

=> A ≥ 5

xét A = 5 <=> |2x - 1| = 0 <=> x = 1/2

vậy_

B = 3 - |1 - x|

có |1-x| ≥ 0 => -|1 - x|  ≤ 0

=> 3 - |1 - x| ≤ 3

=> B ≤ 3

xét  B = 3 <=> |1-x| = 0 <=> x = 1

vậy_

13 tháng 7 2019

\(\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}\right)\) 

\(=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2^2+2.2\sqrt{5}+\sqrt{5^2}\right)}+\sqrt[3]{2+\sqrt{5}}\right)\) 

\(=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2+\sqrt{5}\right)^2}+\sqrt[3]{2+\sqrt{5}}\right)\) 

\(=2\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{2+\sqrt{5}}=2\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}=2\sqrt[3]{4-5}=2\sqrt[3]{-1}=-1.2=-2\)

13 tháng 7 2019

ha dẻ vcayk mafd  bạn lét  123=4=1=5342=6678=+493076

19 tháng 8 2021

\(2\left|2x-\frac{5}{7}\right|-1\)

Vì \(2\left|2x-\frac{5}{7}\right|\ge0\forall x\)

\(\Rightarrow2\left|2x-\frac{5}{7}\right|-1\ge-1\forall x\)

Vậy  \(2\left|2x-\frac{5}{7}\right|-1\) đạt giá trị nhỏ nhất là \(-1\Leftrightarrow2x-\frac{5}{7}=0\Leftrightarrow2x=\frac{5}{7}\Leftrightarrow x=\frac{5}{14}\)

20 tháng 10 2018

Lời giải: Sử dụng hằng đẳng thức \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)  ta có:

Sn=\(\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{2\times3}\right]+\frac{1}{2}\left[\frac{1}{2\times3}-\frac{1}{3\times4}\right]+...\)\(+\frac{1}{2}\left[\frac{1}{\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)

20 tháng 10 2018

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

9 tháng 10 2016

ta có sin a^2=4/9 =>cos a^2=1-4/9=5/9

C=5*5/9+2*4/9+11/3