Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)
= \(\sqrt{\left(2a^2-3\right)^2}-\sqrt{\left(a^2-4\right)^2}\)
= \(|2a^2-3|-|a^2-4|\)
= \(2a^2-3+a^2-4\)
= \(3a^2-7\)
Thay a=\(\sqrt{3}\).Ta có:
\(3.\left(\sqrt{3}\right)^2-7\)
= 3.3-7=2
b/ \(\sqrt{10a^2-12a\sqrt{10}+36}\)
= \(\sqrt{\left(a\sqrt{10}\right)^2-2.a\sqrt{10}.6+6^2}\)
= \(\sqrt{\left(a\sqrt{10}-6\right)^2}\)
= \(|a\sqrt{10}-6|\)
= \(-a\sqrt{10}+6\)
Thay a= \(\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)=\(\frac{3}{\sqrt{10}}\),Ta có:
\(-\frac{3}{\sqrt{10}}.\sqrt{10}+6\)
= -3+6 =3
\(a,\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=-13\sqrt{3}\)
\(b,2\sqrt{3}.\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)
\(=2\sqrt{3}.6\sqrt{3}=36\)
\(c,\left(2\sqrt{2}-\sqrt{3}\right)^2=8-4\sqrt{6}+3\)
\(=11-4\sqrt{6}\)
\(d,\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)=1+2\sqrt{3}+3-2\)
\(=2+2\sqrt{3}\)
Bài 2:
a, Ta có
\(3\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}\)
= \(3\left|-2\right|+\left|-5\right|\)
=\(6+5\)
= 11
Vậy \(3\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}=11\)
b, Ta có
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}\)
= \(\sqrt{5+2\sqrt{5}+1}-\sqrt{5}\)
= \(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}\)
= \(\left|\sqrt{5}+1\right|-\sqrt{5}\)
= \(\sqrt{5}+1-\sqrt{5}=1\)
Vậy \(\sqrt{6+2\sqrt{5}}-\sqrt{5}=1\)
Mấy bài này dài vật vã ghê =)))))))))))))
1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)
=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)
b, M = \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))
= \(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)
= \(\sqrt{3}\left(x-1\right)\)
Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:
M = \(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)
Vậy với x = \(2+\sqrt{3}\)thì M = \(3+\sqrt{3}\)
2, Mình chỉ giải câu a thôi nhé:
\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)
\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)
\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)
\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)
Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)
\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)
\(\Leftrightarrow2\left(b+c\right)\ge4a\)
\(\Leftrightarrow b+c\ge2a\)
4*. Thật ra cái này mình xài làm trội, làm giảm là được mà
Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)
Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)
+ .........................................................
\(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)
Cộng tất cả vào
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)
\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)
\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)
\(A+1>2\sqrt{n+1}-3+1\)
\(A+1>2\sqrt{n+1}-2\)
\(A+1>2\left(\sqrt{n+1}-1\right)\)
Vậy ta có điều phải chứng minh.
a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{3-2\sqrt{3}+1}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{9+6\sqrt{2}+2}-3+\sqrt{2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
c) \(\sqrt{25x^2}-2x=-5x-2x=-7x\)(vì x < 0)
d) \(x-5+\sqrt{25-10x+x^2}=x-5+\sqrt{\left(5-x\right)^2}=x-5+x-5=2x-10\) (vì x > 5)
\(\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}\right)\)
\(=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2^2+2.2\sqrt{5}+\sqrt{5^2}\right)}+\sqrt[3]{2+\sqrt{5}}\right)\)
\(=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2+\sqrt{5}\right)^2}+\sqrt[3]{2+\sqrt{5}}\right)\)
\(=2\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{2+\sqrt{5}}=2\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}=2\sqrt[3]{4-5}=2\sqrt[3]{-1}=-1.2=-2\)
ha dẻ vcayk mafd bạn lét 123=4=1=5342=6678=+493076