Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)
x=15
y=7
z=3
t=1
Ta có:
x5=y6⇒x20=y24x5=y6⇒x20=y24 (1)(1)
y8=z7=y24=z21y8=z7=y24=z21 (2)(2)
Từ (1)(1) và (2)(2) ⇒x20=y24=z21⇒x20=y24=z21
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x20=y24=z21=x+y−z20+24−21=6923=3x20=y24=z21=x+y-z20+24-21=6923=3
⇒⎧⎪⎨⎪⎩x=60y=72z=63⇒{x=60y=72z=63
Vậy x=60;y=72x=60;y=72 và z=63
Ta có: \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\) \(=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)
=>x:15=1 =>x=15
y:7=1=>y=7
z:3=1=>z=3
t:1=1=>t=1
Theo đề \(x:y:z:t=15:7:3:1\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\)và \(x-y+z-t=10\)
Áo dụng TC dãy tỉ số bằng nhau, ta có
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)
Vậy \(x=1.15=15\)
\(y=1.7=7\)
\(z=1.3=3\)
\(t=1.1=1\)
Vậy \(\left(x;y;z;t\right)=\left(15;7;3;1\right)\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Ta có: x : y : z : t = 15 : 7 : 3 : 1
⇒ \(\dfrac{x}{15}\) = \(\dfrac{y}{7}\) = \(\dfrac{z}{3}\) = \(\dfrac{t}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{15}\) = \(\dfrac{y}{7}\) = \(\dfrac{z}{3}\) = \(\dfrac{t}{1}\) = \(\dfrac{x-y+z-t}{15-7+3-1}\) = \(\dfrac{10}{10}\) = 1
⇒ \(\dfrac{x}{15}\) = 1 ⇒ x = 15
\(\dfrac{y}{7}\) = 1 ⇒ y = 7
\(\dfrac{z}{3}\) = 1 ⇒ z = 3
\(\dfrac{t}{1}\) = 1 ⇒ t = 1
Vậy x = 15 ; y = 7 ; z = 3 ; t = 1
Chúc bạn An Lê Khánh học tốt!
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{t}{1}=\dfrac{x-y+z-t}{15-7+3-1}=\dfrac{10}{10}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)
1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
\(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
=> x = 75.4 : 15 = 20 ;
y = 60.4 : 15 = 16 ;
z = 45.4 : 15 = 12
Vậy x = 20 ; y = 16 ; z = 12
2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Nếu x + y + z + t = 0
=> x + y = - (z + t)
=> y + z = - (t + x)
=> z + t = - (x + y)
=> t + x = - (z + y)
Khi đó :
P = \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
=> P = 4
Nếu x + y + z + t khác 0
=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)
=> y + z + t = z + t + x = t + x + y = x + y + z
=> x =y = z = t
Khi đó : P = 1 + 1 + 1 + 1 = 4
Vậy nếu x + y + z + t = 0 thì P = - 4
nếu x + y + z + t khác 0 thì P = 4
nếu x+y+z+t khác 0 thi A=4 còn nếu bằng 0 thì bằng-4 tick nha
Ta co :
x:y:z:t=15:7:3:1 va x-y+z-t=10
Theo de bai ta co:
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\) va x-y+z-t = 10
Áp dụng tính chất tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\Rightarrow\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)
Suy ra : \(\frac{x}{15}=1\Rightarrow x=15.1=15\)
\(\frac{y}{7}=1\Rightarrow y=1.7=7\)
\(\frac{z}{3}=1\Rightarrow z=1.3=3\)
\(\frac{t}{1}=1\Rightarrow t=1.1=1\)
Vay : x=15 ; y=7 ; z=3 ; t=1