K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2015

Ta co : 

x:y:z:t=15:7:3:1 va x-y+z-t=10

Theo de bai ta co:

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\) va x-y+z-t = 10

Áp dụng tính chất tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\Rightarrow\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

Suy ra : \(\frac{x}{15}=1\Rightarrow x=15.1=15\)

\(\frac{y}{7}=1\Rightarrow y=1.7=7\)

\(\frac{z}{3}=1\Rightarrow z=1.3=3\)

\(\frac{t}{1}=1\Rightarrow t=1.1=1\)

Vay : x=15 ; y=7 ; z=3 ; t=1

4 tháng 11 2015

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

x=15

y=7

z=3

t=1

4 tháng 11 2015

z = 3

Tick mk nha avt209687_60by60.jpg _Công chúa nhỏ _

5 tháng 12 2021

Ta có:

x5=y6⇒x20=y24x5=y6⇒x20=y24   (1)(1)

y8=z7=y24=z21y8=z7=y24=z21    (2)(2)

Từ (1)(1) và (2)(2) ⇒x20=y24=z21⇒x20=y24=z21

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x20=y24=z21=x+y−z20+24−21=6923=3x20=y24=z21=x+y-z20+24-21=6923=3

⇒⎧⎪⎨⎪⎩x=60y=72z=63⇒{x=60y=72z=63

Vậy x=60;y=72x=60;y=72 và z=63

6 tháng 12 2017

Ta có: \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\) \(=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

=>x:15=1 =>x=15

    y:7=1=>y=7

    z:3=1=>z=3

    t:1=1=>t=1

24 tháng 12 2017

Theo đề \(x:y:z:t=15:7:3:1\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\)và \(x-y+z-t=10\)

Áo dụng TC dãy tỉ số bằng nhau, ta có

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

Vậy \(x=1.15=15\)

\(y=1.7=7\)

\(z=1.3=3\)

\(t=1.1=1\)

Vậy \(\left(x;y;z;t\right)=\left(15;7;3;1\right)\)

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

2 tháng 7 2018

Ta có: x : y : z : t = 15 : 7 : 3 : 1

\(\dfrac{x}{15}\) = \(\dfrac{y}{7}\) = \(\dfrac{z}{3}\) = \(\dfrac{t}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{15}\) = \(\dfrac{y}{7}\) = \(\dfrac{z}{3}\) = \(\dfrac{t}{1}\) = \(\dfrac{x-y+z-t}{15-7+3-1}\) = \(\dfrac{10}{10}\) = 1

\(\dfrac{x}{15}\) = 1 ⇒ x = 15

\(\dfrac{y}{7}\) = 1 ⇒ y = 7

\(\dfrac{z}{3}\) = 1 ⇒ z = 3

\(\dfrac{t}{1}\) = 1 ⇒ t = 1

Vậy x = 15 ; y = 7 ; z = 3 ; t = 1

Chúc bạn An Lê Khánh học tốt!

3 tháng 7 2018

mơn bạn j đó :v

20 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{t}{1}=\dfrac{x-y+z-t}{15-7+3-1}=\dfrac{10}{10}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)

3 tháng 7 2017

15 - 7 + 3 + 1 = 12 

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4

14 tháng 1 2016

nếu x+y+z+t khác 0 thi A=4 còn nếu bằng 0 thì bằng-4 tick nha