Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu x+y+z+t = 0 => x+y = -(z+t) ; y+z = -(x+t) ; z+t = -(y+x) ; t+x = -(z+y)
=> Biểu thức = -1-1-1-1 = -4
Nếu x+y+z+t khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3
=> x=1/3.(y+z+t) ; y = 1/3.(z+t+x) ; z = 1/3.(t+x+y) ; t = 1/3.(x+y+z)
=> x=y=z=t
=> A = 1+1+1+1 = 1
Vậy ...........
k mk nha
ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t};\frac{y}{x+y+t}>\frac{y}{x+y+z+t};\frac{z}{y+z+t}>\frac{z}{x+y+z+t}.\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)(1)
Lại có: \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t};\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)(2)
Từ (1);(2) \(\Rightarrow1< M< 2\Rightarrow M\notinℕ\)
từ dữ kiện của đề bài cho.
ta cộng lần lượt các vế của đẳng thức với 1
sau đó quy đồng ta sẽ dễ dàng nhìn thấy x=y=z=t
suy ra P=4
Nếu \(x+y+z+t=0\)suy ra \(P=-1-1-1-1=-4\).
Nếu \(x+y+z+t\ne0\):
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Leftrightarrow x=y=z=t\ne0\).
Khi đó \(P=1+1+1+1=4\).
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow1+\frac{y+z+t}{x}=1+\frac{z+t+x}{y}=1+\frac{t+x+y}{z}=1+\frac{x+y+z}{t}\)
\(\Leftrightarrow\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}=\frac{x+y+z+t}{t}\)
\(TH1:x+y+z+t=0\left(ĐK:x,y,z,t\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\end{cases}\Rightarrow P=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(x+t\right)}{x+t}+\frac{z+t}{-\left(z+t\right)}+\frac{t+x}{-\left(y+z\right)}}\)=-4
\(TH2:x+y+z+t\ne0\)
\(\Rightarrow x=y=z=t\Rightarrow P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=4\)
Vậy P=4 hay P=-4
Trả lời :..................................
P = 4,..................................
Hk tốt......................................
cộng 1 vào ĐK thì tử là x+y+z+t => mẫu = nhau
=> x=y=z=t => P=4
ĐK:y+z+t,z+t+x,t+x+z,x+z+y khác 0
x+y+t+z khác 0
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}\)
mà x+y+z+t khác 0 nên:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{1}{3}\Rightarrow x=y=z=t\)
\(\Rightarrow P=4\left(\text{nguyên}\right).\text{Vậy: P nguyên}\)
Ta có:\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t};\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t};\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
Khi đó:\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(=2\)
\(\Rightarrow M^{10}< 2^{10}=1024< 2020\)
Vậy ta có điều fải chứng minh :D
nếu x+y+z+t khác 0 thi A=4 còn nếu bằng 0 thì bằng-4 tick nha