\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

5 tháng 10 2021

Bài 5:

Theo đề ra, ta có:

\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)

Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)

\(\Rightarrow k^2=4\Rightarrow k=\pm2\)

Trường hợp 1: Với \(k=2\)

\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)

\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)

Trường hợp 2: Với \(k=-2\)

\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)

\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)

5 tháng 10 2021

Bài 4:

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)

\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)

\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)

\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

10 tháng 8 2016

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{\left(5z-25\right)-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)\(=\frac{5z-25-3x+3-4y-12}{30-6-16}=\frac{\left(5z-3x-4y\right)-\left(25-3+12\right)}{8}=\frac{50-34}{8}=\frac{16}{8}=2\)

Khi đó:\(\frac{3x-3}{6}=2\Rightarrow\frac{x-1}{2}=2\Rightarrow x=5;\frac{4y+12}{16}=2\Rightarrow\frac{y+3}{4}=2\Rightarrow y=5\)

\(\frac{5z-25}{30}=2\Rightarrow\frac{z-5}{6}=2\Rightarrow z=17\)

12 tháng 8 2019

Đề dài quá nên mình làm từ từ.

a) Từ giả thiết ta có \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

Từ đó suy ra x =15; y =7;z=3;t=1

Đúng ko ta:3

12 tháng 8 2019

b) \(\left\{{}\begin{matrix}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{matrix}\right.\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\). Trở về dạng câu a:)

c)\(\left\{{}\begin{matrix}2x=3y\\5y=7z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{matrix}\right.\). trở về dạng câu b:D

27 tháng 7 2019

Ta có: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)\(=\frac{5z-25-3x+3-4y-12}{6-16-30}\)\(=\frac{\left(5z-3x-4y\right)-\left(25-3+12\right)}{-40}\)\(=\frac{50-34}{-40}=\frac{16}{-40}=\frac{2}{-5}\)

+) \(\frac{x-1}{2}=\frac{-2}{5}\Rightarrow5\left(x-1\right)=-4\Rightarrow x-1=\frac{-4}{5}\)\(\Rightarrow x=\frac{-4}{5}+1=\frac{1}{5}\)

+)\(\frac{y+3}{4}=\frac{-2}{5}\Rightarrow5\left(y+3\right)=-8\Rightarrow y+3=\frac{-8}{5}\)\(\Rightarrow y=\frac{-8}{5}-3=\frac{-23}{5}\)

+)\(\frac{z-5}{6}=\frac{-2}{5}\Rightarrow5\left(z-5\right)=-12\Rightarrow z-5=\frac{-12}{5}\)\(\Rightarrow z=\frac{-12}{5}+5=\frac{13}{5}\)

Vậy...

19 tháng 9 2016

lúc nào bạn cần?

6 tháng 10 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy ...

ê nhỏ tự túc đê

12 tháng 2 2018

a/

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)

12 tháng 2 2018

b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)

\(\Rightarrow x=20;y=30;z=42\)

12 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

12 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42

 

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)