Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
Vì \(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\); \(\left(3y+10\right)^{2012}\ge0\)
=>\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)
Dấu "=" xảy ra khi \(\left|2x-27\right|^{2011}=\left(3y+10\right)^{2012}=0\Leftrightarrow\hept{\begin{cases}\left|2x-27\right|=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
\(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2018}=0\)
Ta có \(\left|2x-27\right|^{2017}\ge0\forall x;\left(3y+10\right)^{2018}\ge0\forall y\)
\(\Rightarrow\left|2x-27\right|^{2017}+\left(3.y+10\right)^{2018}\ge0\forall x;y\)
\(\Rightarrow\left|2x-17\right|^{2017}+\left(3y+10\right)^{2018}=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-17=0\\3.y+10=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{17}{2}\\y=-\frac{10}{3}\end{cases}}\)
Vì \(\left|\left|3x-3\right|+2x+\left(-1\right)^{2016}\right|\ge0\forall x\)
\(\Rightarrow3x+2017^0\ge0\Rightarrow x\ge-\frac{1}{3}\)
Khi đó: \(\left|\left|3x-3\right|+2x+1\right|=3x+1\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|+2x+1=3x+1\\\left|3x-3\right|+2x+1=-3x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=x\\\left|3x-x\right|=-5x-2\end{cases}}\)
Để |3x - 3| = x => \(x\ge0\)
=> \(\orbr{\begin{cases}3x-3=x\\3x-3=-x\end{cases}\Rightarrow\orbr{\begin{cases}2x=3\\4x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\left(tm\right)\\x=\frac{3}{4}\left(tm\right)\end{cases}}}\)
Để |3x - 3| = - 5x - 2
=> \(-5x-2\ge0\Rightarrow x\le-\frac{2}{5}\)
=> \(\orbr{\begin{cases}3x-3=5x+2\\3x-3=-5x-2\end{cases}\Rightarrow\orbr{\begin{cases}-2x=5\\8x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{5}{2}\left(\text{tm}\right)\\x=\frac{1}{8}\left(\text{loại}\right)\end{cases}}}\)
Vậy \(x\in\left\{\frac{-5}{2};\frac{3}{2};\frac{3}{4}\right\}\)
|2x-27|^2011>0
(3y+10)^2>0
=|2x-27|^2011+(3y+10)^2>0
mà |2x-27|^2011+(3y+10)^2=0
=>|2x-27|^2011=(3y+10)^2=0
+)|2x-27|^2011=0=>2x-27=0=>2x=27=>x=13,5
+)(3y+10)^2=0=>3y+10=0=>3y=-10=>y=-10/3