K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

PT <=> \(\sqrt{4x^2-14x+16}-\text{ }\sqrt{x^2-4x+5}=x-1\)

Đẽ thấy x = 1 không là n* của pt . Chia cả hai vế cho x - 1 

pt  <=> \(\sqrt{\frac{4x^2-14x+16}{x^2-2x+1}}-\sqrt{\frac{x^2-4x+5}{x^2-2x+1}}=1\)

    <=> \(\sqrt{\frac{4\left(x^2-2x+1\right)+12-6x}{x^2-2x+1}}-\sqrt{\frac{x^2-2x+1+4-2x}{x^2-2x+1}}=1\)

     <=> \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}-\sqrt{1+\frac{4-2x}{x^2-2x+1}}=1\)

Đặt \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}=a;\sqrt{1+\frac{4-2x}{x^2-2x+1}}=b\) (a;b > 0 ) ta có hpt 

\(\int^{a^2-3b^2=4+\frac{12-6x}{x^2-2x+1}-3-\frac{12-6x}{x^2-2x+1}=1}_{a-b=1}\)

Tự giải 

 

22 tháng 11 2015

ak,,,,,,,còn mỗi bước GPT nghiệm nguyên nữa mà mãi ko ra

20 tháng 8 2019

\(a,\sqrt{x+1}=\sqrt{2-x}\)

\(\Rightarrow x+1=2-x\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}\)

21 tháng 10 2020

a) \(ĐKXĐ:-1\le x\le2\)

Bình phương 2 vế ta có: 

\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )

Vậy \(x=\frac{1}{2}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )

Vậy \(x=65\)

c) \(ĐKXĐ:x\ge1\)

\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)

\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )

Vậy \(x=5\)

23 tháng 11 2015

\(\Leftrightarrow4\left(x+1\right)+\sqrt{2\left(x+1\right)^2+\left(x^2+1\right)}-3\sqrt{x^2+1}=0\)

\(a=x+1;\text{ }b=\sqrt{x^2+1}\)

\(\Rightarrow4a-3b+\sqrt{2a^2+b^2}=0\Leftrightarrow3b-4a=\sqrt{2a^2+b^2}\)

\(\Rightarrow\left(3b-4a\right)^2=2a^2+b^2\Leftrightarrow7\left(\frac{a}{b}\right)^2-12\frac{a}{b}+4=0\)

\(\Leftrightarrow\frac{a}{b}=\frac{6\pm2\sqrt{2}}{7}\)

Khá xấu nhưng vẫn giải được nhé. Bạn kiểm tra lại ở trên rồi tính toán nốt.

9 tháng 11 2015

Đk : ... 

dễ thấy x  = 0 không là nghiệm của pt 

chia cả hai vế của pt cho \(\sqrt{x}\)  ta có :

\(\frac{x+1+\sqrt{x^2-4x+1}}{\sqrt{x}}=3\)

<=> \(\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{x-4+\frac{1}{x}}=3\) 

Đặt \(\sqrt{x}+\frac{1}{\sqrt{x}}=t\) => \(x+\frac{1}{x}=t^2-2\) 

pt <=> \(t+\sqrt{t^2-6}=3\)

giải tiếp nha 

12 tháng 11 2015

ừm , mấy bạn này cũng lớp 9 hết á

5 tháng 8 2018

\(a,\sqrt{2x+5}=\sqrt{1-x}\)

\(\Rightarrow2x+5=1-x\)

\(2x+x=1-5\)

\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên

19 tháng 11 2015

\(x^2+6x+9=\left(\sqrt{2x+3}+1\right)^2\)

\(\left(x+3\right)^2=nhưcáitrên\)

\(x+3=\sqrt{2x+3}+1\)

\(x+2=\sqrt{2x+3}\)

\(x^2+4x+4=2x+3\)