K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
5
5 tháng 1 2019
u6u6u6u56u56u56h5e686u6rtujrdtfghbngyjgultjrt6ru756785uehrthtdgbhtybrnyntyjgnjtdnytntyngrthtrberhrrthbhretrbthrhfhthb
LT
1
WR
30 tháng 6 2019
\(Pt\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)^2}=\left(2x-1\right)\left(x^2+1\right).\)
(Đk có nghiệm: \(x\ge\frac{1}{2}\))
\(Pt\Leftrightarrow\left|x-\frac{1}{2}\right|=\left(2x-1\right)\left(x^2+1\right)\Rightarrow x-\frac{1}{2}=\left(2x-1\right)\left(x^2+1\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1-\frac{1}{2}\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\left(t.m\right)\)
MN
0
QA
0
NB
0
NB
0
ĐKXĐ: \(x\ge-1\)
\(2x^2+4=5\sqrt{x^3+1}\Leftrightarrow2\left(x+1+x^2-x+1\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)(1)
Đặt \(\hept{\begin{cases}a=\sqrt{x+1}\ge0\\b=\sqrt{x^2-x+1}\ge0\end{cases}}\) pt (1) trở thành \(2\left(a^2+b^2\right)=5ab\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\Leftrightarrow\orbr{\begin{cases}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{cases}}\)
Đến đây thì bạn xét từng trường hợp để giải pt là xong