K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

\(2x-4-\sqrt{x-2}=0\)ĐK : x > = 2 

\(\Leftrightarrow2\left(x-2\right)-\sqrt{x-2}=0\Leftrightarrow\sqrt{x-2}\left(2\sqrt{x-2}-1\right)=0\)

TH1 : \(\sqrt{x-2}=0\Leftrightarrow x=2\)

TH2 : \(2\sqrt{x-2}=1\Leftrightarrow\sqrt{x-2}=\frac{1}{2}\Leftrightarrow x-2=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}+2=\frac{9}{4}\)

5 tháng 1 2019

u6u6u6u56u56u56h5e686u6rtujrdtfghbngyjgultjrt6ru756785uehrthtdgbhtybrnyntyjgnjtdnytntyngrthtrberhrrthbhretrbthrhfhthb

5 tháng 1 2019

x = 5,44948974 

26 tháng 2 2020

ĐKXĐ: \(x\ge-1\)

\(2x^2+4=5\sqrt{x^3+1}\Leftrightarrow2\left(x+1+x^2-x+1\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)(1)

Đặt \(\hept{\begin{cases}a=\sqrt{x+1}\ge0\\b=\sqrt{x^2-x+1}\ge0\end{cases}}\) pt (1) trở thành \(2\left(a^2+b^2\right)=5ab\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\Leftrightarrow\orbr{\begin{cases}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{cases}}\)

Đến đây thì bạn xét từng trường hợp để giải pt là xong

30 tháng 6 2019

\(Pt\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)^2}=\left(2x-1\right)\left(x^2+1\right).\)

(Đk có nghiệm: \(x\ge\frac{1}{2}\))

\(Pt\Leftrightarrow\left|x-\frac{1}{2}\right|=\left(2x-1\right)\left(x^2+1\right)\Rightarrow x-\frac{1}{2}=\left(2x-1\right)\left(x^2+1\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+1-\frac{1}{2}\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\left(t.m\right)\)

8 tháng 10 2020

a) ĐK: \(x>2009;y>2010;z>2011\)

\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)

Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)

8 tháng 10 2020

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)

\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)

(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)

Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)

Vậy phương trình có một nghiệm duy nhất là 3

13 tháng 12 2015

Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge1\right)\)
\(\Rightarrow x^2-2x=\frac{t^2-7}{6}\)
pt trên tương đương với \(\frac{7-t^2}{6}+t=0\)
\(\Leftrightarrow t^2-7-6t=0\)
\(\Leftrightarrow\int^{t=-1}_{t=7}\)
\(\Leftrightarrow t=7\)(vì \(t\ge1\))
thay vào rồi bình phương lên tìm x

29 tháng 2 2020

Nghiệm đẹp quá!

ĐKXĐ: \(x\ge0\)

Đặt \(\sqrt{2x+1}=a>0;\sqrt{3x}=b\ge0\Rightarrow b^2-a^2=x-1\)

PT \(\Leftrightarrow a-b=b^2-a^2\)

\(\Leftrightarrow\left(b-a\right)\left(b+a+1\right)=0\)

\(\Leftrightarrow a=b\) \(\because a+b+1>0\)