Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân \(2^2\) vào hai vế của hằng đẳng thức ta được:
\(2^2.B=2^2+2^4+2^6+...+2^{102}\)
Lấy \(2^2B-B\) ta được:
\(4B-B=\left(2^2+2^4+2^6+...+2^{102}\right)-\left(1+2^2+2^4+...+2^{100}\right)=2^{102}-1\)
\(\Rightarrow3B=2^{102}-1\)
\(\Rightarrow B=\frac{2^{102}-1}{3}\)
A=(1.100)^2+(2.100)^2+(3.100)^2+...+(10.100)^2
=1^2.100^2+2^2.100^2+3^2.100^2+....+10^2.100^2
=100^2.(1^2+2^2+3^2+...+10^2)
=10000.385=3850000
Ta có A = 1/2+2/22+3/23+4/24+...+100/2100
<=> A = 1/2+2/4+3/9+4/16+...+100/2100
\(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)
\(Q\left(x\right)=-3x^5+2x^2-2x+3\)
\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)
\(=x^4+2\)
\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)
\(=6x^5+x^4-4x^2+4x-4\)
Thu gọn + sắp xếp luôn
P(x) = 3x5 + x4 - 2x2 + 2x - 1
Q(x) = -3x5 + 2x2 - 2x + 3
P(x) + Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) + ( -3x5 + 2x2 - 2x + 3 )
= ( 3x5 - 3x5 ) + x4 + ( 2x2 -- 2x2 ) + ( 2x - 2x ) + ( 3 - 1 )
= x4 + 2
P(x) - Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) - ( -3x5 + 2x2 - 2x + 3 )
= 3x5 + x4 - 2x2 + 2x - 1 + 3x5 - 2x2 + 2x - 3
= ( 3x5 + 3x5 ) + x4 + ( -2x2 - 2x2 ) + ( 2x + 2x ) + ( -1 - 3 )
= 6x5 + x4 - 4x2 + 4x - 4
Áp dụng công thức: (n-2)n(n+2) = n3 - 4n => n3 = (n-2).n.(n+2) + 4n
b18) Áp dụng: ta có: 23 = 4.2; 43 = 2.4.6 + 4.4 ; 63 = 4.6.8 + 4.6; ...; 1003 = 98.100.102 + 4.100
=> A = 4.2 + 2.4.6 + 4.4 + 4.6.8 + 4.6 +...+ 98.100.102 + 4.100
= (2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 ) + 4.(2 + 4 + 6 + ...+ 100) = B + 4.C
Tính B = 2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102
=> 8.B = 2.4.6.8 + 4.6.8.8 + 6.8.10.8 +...+ 98.100.102.8
= 2.4.6.8 + 4.6.8 (10 - 2) + 6.8.10.(12 - 4) +...+ 98.100.102.(104 - 96)
= 2.4.6.8 + 4.6.8.10 - 2.4.6.8 + 6.8.10.12 - 4.6.8.10 +...+ 98.100.102.104 - 96.98.100.102
= (2.4.6.8 + 4.6.8.10 + 6.8.10.12 +...+ 98.100.102.104) - (2.4.6.8 + 4.6.8.10 +...+ 96.98.100.102)
= 98.100.102.104
=> B =98.100.102.104 : 8 = 12 994 800
C = 2+ 4+ 6 +..+100 = (2+100) . 50 : 2 = 2550
Vậy A = B +4C = 12 994 800 + 4. 2550 = 13 005 000
\(B=1+2^2+...+2^{100}\)
\(2^2B=2^2+2^4+...+2^{102}\)
\(4B-B=\left(2^2+2^4+...+2^{102}\right)-\left(1+2^2+...+2^{100}\right)\)
\(3B=2^{102}-1\)
\(B=\frac{2^{102}-1}{3}\)
thank nha