K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

2/ Ta có : abcd = (5c + 1 )^2 

Với c = 6 => ( 5c + 1 )^2 = 31^2 = 961 < 1000 

=> c \(\in\left\{7;8;9\right\}\)

Với c = 7 =>( 5c + 1 )^2  = 36^2 = 1296 ( loại ) Vì 9 khác 7 

     c = 8 => ( 5c + 1 )^2  = 41^ 2 = 1681 ( thỏa mãn )

     c = 9 => ( 5c + 1 )^2  = 46^2 = 2116 ( loại ) vì 1 khác 9 

16 tháng 7 2019

Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:

a. x2 - 2xy + 2y2 + 2y +1

= (x2 - 2xy + y2) +( y + 2y +1)

= (x-y)2 + (y+1)2

b. 4x- 12x - y+ 2y + 8

= (4x2 - 12x + 9 ) - (y2 - 2y  +1 )

= (2x-3)2 - (y-1)2

10 tháng 2 2020

 (x-1)200+(y+2)300=0 

(x-1)^200 > 0 ; (y+2)^300>0

=> (x-1)^200 = 0 và (y + 2)^300 = 0

=> x - 1 = 0 và y + 2 = 0

=> x = 1 và y = - 2

thay vào rồi tính như bình thường thôi

10 tháng 2 2020

Vì \(\left(x-1\right)^{200}\ge0\forall x\)\(\left(y+2\right)^{300}\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)

mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:

\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)

\(=2+40+4=46\)

12 tháng 9 2015

ĐỀ SAI RỒI BẠN MÌNH LÀM RỒI MÀ SAI KẾT QUẢ 

7 tháng 6 2020

\(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)

\(Q\left(x\right)=-3x^5+2x^2-2x+3\)

\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)

\(=x^4+2\)

\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-4\)

7 tháng 6 2020

Thu gọn + sắp xếp luôn

P(x) = 3x5 + x4 - 2x2 + 2x - 1

Q(x) = -3x5 + 2x2 - 2x + 3

P(x) + Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) + ( -3x5 + 2x2 - 2x + 3 )

                   = ( 3x5 - 3x5 ) + x4 + ( 2x2 -- 2x2 ) + ( 2x - 2x ) + ( 3 - 1 )

                   = x4 + 2

P(x) - Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) - (  -3x5 + 2x2 - 2x + 3 )

                  = 3x5 + x4 - 2x2 + 2x - 1 + 3x5 - 2x2 + 2x - 3

                  = ( 3x5 + 3x5 ) + x4 + ( -2x2 - 2x2 ) + ( 2x + 2x ) + ( -1 - 3 )

                  = 6x5 + x4 - 4x2 + 4x - 4

19 tháng 4 2020

a) A + ( x2y - 2xy2 + 5xy - 3 ) = -2x2y + xy2 + xy - 5

A = -2x2y + xy2 + xy - 5 - ( x2y - 2xy2 + 5xy - 3 )

A = -2x2y + xy2 + xy - 5 - x2y + 2xy2 - 5xy + 3

A = ( -2x2y - x2y ) + ( xy2 + 2xy2 ) + ( xy - 5xy ) + ( -5 + 3 )

A = -3x2y + 3xy2 + ( -4xy ) + ( -2 )

b) x = -1, y = 1

Thay x = -1, y = 1 vào đa thức A ta được :

\(-3\left(-1\right)^2\cdot1^2+3\left(-1\right)\cdot1^2+\left(-4\left(-1\right)\cdot1\right)+\left(-2\right)\)

\(=-3\cdot1+\left(-3\right)\cdot1+\left(4\cdot1\right)+\left(-2\right)\)

\(=\left(-3\right)+\left(-3\right)+4+\left(-2\right)\)

\(=-6+4+\left(-2\right)\)

\(=-4\)

Vậy A = -4 khi x = -1 , y = 1

9 tháng 4 2019

Online Math là nhất

Online Math như cặc

20 tháng 10 2020

\(A=\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)-\left(-1\right)^{2020}\)

=> \(A=\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)-1\)

Vì \(\hept{\begin{cases}\left(x-\frac{2}{7}\right)\ge0\forall x\\\left(0,2-\frac{1}{5}y\right)\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)\ge0\forall x,y\)

\(\Rightarrow\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)-1\ge-1\forall x,y\)

Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}x-\frac{2}{7}=0\\0,2-\frac{1}{5}y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{7}\\y=1\end{cases}}\)

Vậy \(A_{min}=-1\)khi \(\hept{\begin{cases}x=\frac{2}{7}\\y=1\end{cases}}\)