Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Ta có : abcd = (5c + 1 )^2
Với c = 6 => ( 5c + 1 )^2 = 31^2 = 961 < 1000
=> c \(\in\left\{7;8;9\right\}\)
Với c = 7 =>( 5c + 1 )^2 = 36^2 = 1296 ( loại ) Vì 9 khác 7
c = 8 => ( 5c + 1 )^2 = 41^ 2 = 1681 ( thỏa mãn )
c = 9 => ( 5c + 1 )^2 = 46^2 = 2116 ( loại ) vì 1 khác 9
Ta có: \(\left(x-1\right)^{20}\ge0\forall x\)
\(\left(y+2\right)^{30}\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)
Mà \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Rightarrow\left(x-1\right)^{20}=\left(y+2\right)^{30}=0\)
\(\Rightarrow x-1=y+2=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay x = 1 và y = -2 vào biểu thức A ta được:
\(A=2.1^5-5.\left(-2\right)^3+4=-76\)
Vậy A = -76 tại x = 1 và y = -2.
Ta có : \(\hept{\begin{cases}\left(x-1\right)^{20}\ge0\forall x\\\left(y+2\right)^{30}\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\forall x;y\)
Dựa vào đề bài ta có \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Khi đó A = 2.15 - 5.(-2)3 + 4 = 2 + 40 + 4 = 46
a) A + ( x2y - 2xy2 + 5xy - 3 ) = -2x2y + xy2 + xy - 5
A = -2x2y + xy2 + xy - 5 - ( x2y - 2xy2 + 5xy - 3 )
A = -2x2y + xy2 + xy - 5 - x2y + 2xy2 - 5xy + 3
A = ( -2x2y - x2y ) + ( xy2 + 2xy2 ) + ( xy - 5xy ) + ( -5 + 3 )
A = -3x2y + 3xy2 + ( -4xy ) + ( -2 )
b) x = -1, y = 1
Thay x = -1, y = 1 vào đa thức A ta được :
\(-3\left(-1\right)^2\cdot1^2+3\left(-1\right)\cdot1^2+\left(-4\left(-1\right)\cdot1\right)+\left(-2\right)\)
\(=-3\cdot1+\left(-3\right)\cdot1+\left(4\cdot1\right)+\left(-2\right)\)
\(=\left(-3\right)+\left(-3\right)+4+\left(-2\right)\)
\(=-6+4+\left(-2\right)\)
\(=-4\)
Vậy A = -4 khi x = -1 , y = 1
(x-1)200+(y+2)300=0
(x-1)^200 > 0 ; (y+2)^300>0
=> (x-1)^200 = 0 và (y + 2)^300 = 0
=> x - 1 = 0 và y + 2 = 0
=> x = 1 và y = - 2
thay vào rồi tính như bình thường thôi
Vì \(\left(x-1\right)^{200}\ge0\forall x\); \(\left(y+2\right)^{300}\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)
mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:
\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)
\(=2+40+4=46\)