Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức: (n-2)n(n+2) = n3 - 4n => n3 = (n-2).n.(n+2) + 4n
b18) Áp dụng: ta có: 23 = 4.2; 43 = 2.4.6 + 4.4 ; 63 = 4.6.8 + 4.6; ...; 1003 = 98.100.102 + 4.100
=> A = 4.2 + 2.4.6 + 4.4 + 4.6.8 + 4.6 +...+ 98.100.102 + 4.100
= (2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 ) + 4.(2 + 4 + 6 + ...+ 100) = B + 4.C
Tính B = 2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102
=> 8.B = 2.4.6.8 + 4.6.8.8 + 6.8.10.8 +...+ 98.100.102.8
= 2.4.6.8 + 4.6.8 (10 - 2) + 6.8.10.(12 - 4) +...+ 98.100.102.(104 - 96)
= 2.4.6.8 + 4.6.8.10 - 2.4.6.8 + 6.8.10.12 - 4.6.8.10 +...+ 98.100.102.104 - 96.98.100.102
= (2.4.6.8 + 4.6.8.10 + 6.8.10.12 +...+ 98.100.102.104) - (2.4.6.8 + 4.6.8.10 +...+ 96.98.100.102)
= 98.100.102.104
=> B =98.100.102.104 : 8 = 12 994 800
C = 2+ 4+ 6 +..+100 = (2+100) . 50 : 2 = 2550
Vậy A = B +4C = 12 994 800 + 4. 2550 = 13 005 000
\(\frac{1}{7^2}A=\frac{1}{7^2}\left(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)
\(\Leftrightarrow\frac{1}{7^2}A=\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-\frac{1}{7^{10}}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)
\(\Leftrightarrow A+\frac{1}{7^2}A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow\frac{50}{49}A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right)\cdot\frac{49}{50}< \frac{1}{50}\left(đpcm\right)\)
1
a) Ta có\(\frac{31}{40}=\frac{31.6}{40.6}=\frac{186}{240}\)
Vì \(240< 241\)
nên\(\frac{286}{240}>\frac{286}{241}\)
Vậy\(\frac{31}{40}>\frac{286}{240}\)
b)Ta có\(\frac{411}{911}=\frac{911-500}{911}=1-\frac{500}{911}\)
\(\frac{41}{91}=\frac{91-50}{91}=1-\frac{50}{91}=1-\frac{500}{910}\)
Vì \(\frac{500}{911}< \frac{500}{910}\)nên\(1-\frac{500}{911}>1-\frac{500}{910}\)
Vậy \(\frac{411}{911}>\frac{41}{91}\)
Bài 1 :
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
Bài 2 :
2.Chứng minh rằng
212+312+213+214+315 chia hết cho 7
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32
Ta có A = 1/2+2/22+3/23+4/24+...+100/2100
<=> A = 1/2+2/4+3/9+4/16+...+100/2100