Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a}\)
Vậy: \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
\(\frac{1}{5}=\frac{1}{6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{7.6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{42}+\frac{1}{30}\)
2) \(A=\frac{n+3}{n-2}=1+\frac{5}{n-2}\)
A nhận giá trị nguyên <=> \(\frac{5}{n-2}\) nhận giá trị nguyên
<=> \(n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=> \(n=\left\{-3;1;3;7\right\}\)
Mình học dốt nên chỉ làm được bài 2 thôi :)
\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để A nhận giá trị nguyên => \(\frac{5}{n-2}\)nhận giá trị nguyên
=> \(5⋮n-2\)
=> \(n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n-2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
\(a)\)\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n(n+1)}\) ; \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n(n+1)}=\frac{1}{n(n+1)}\)
\(b)A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(=(\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})+(\frac{1}{7}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{11})+(\frac{1}{11}-\frac{1}{12})\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
a) Ta có hiệu của chúng là:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(1\right)\)
Mặt khác, ta lại có tích của chúng là:
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}.\frac{1}{n+1}\)
Vậy tích của hai phân số này bằng hiệu của chúng (hiệu của phân số lớn trừ phân số nhỏ)
b) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
a) \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)
vậy \(\frac{1}{n}và\frac{1}{n+1}\)có hiệu và tích bằng nhau
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}\)
do có các cặp âm và dương nên gạch vậy A=\(\frac{1}{2}-\frac{1}{9}\)=\(\frac{7}{18}\)
B=\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{10.11}\)
cách lm tương tự câu A
vậy B= \(\frac{1}{4}-\frac{1}{11}\)=\(\frac{7}{44}\)
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng
n - 2 | 1 | -1 | 7 | -7 |
n | 3 | 1 | 9 | -5 |
c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)
\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng
n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -2 | 10 | -12 |
d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên
<=> \(3n+7⋮2n+3\)
<=> 2(3n + 7) \(⋮\) 2n + 3
<=> 6n + 14 \(⋮\)2n + 3
<=> 3(2n + 3) + 5 \(⋮\)2n + 3
<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)
<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng:
2n + 3 | 1 | -1 | 5 | -5 |
n | -1 | -2 | 1 | -4 |
Vậy ....
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)
Bài 4
Để phân số A có giá trị trong tập hợp số nguyên thì tử phải chia hết cho mẫu.
-> n+3 chia hết cho n-2
->n-2+5 chia hết cho n-2
mà n-2 chia hết cho n-2
-> 5 chia hết cho n-2
->n-2 thuộc Ư(5)={-1,1,-5,5}
=>n thuộc {-3,3,1,7}
Vậy các số nguyên n thỏa mãn là -3,1,3,7
để ps A nguyên thì n+3 chia hết cho n-2
suy ra (n-2)+5 chia hết cho n-2
suy ra 5 chia hết cho n-2
suy ra n-2 thuộc {1;-1;5;-5}
n thuộc {3;1;7;-3}
2)có 1/(a+1)+1/a.(a+1)=a.(a+1)/[(a+1).a.(a+1)]+(a+1)/[(a+1).a.(a+1)](nhân chéo)=a.(a+1)+(a+1)/a.(a+1).(a+1)=(a+1)(a+1)/a.(a+1).(a+1)=1/a
áp dụng :1/5=1/(5+1)+1/5.(5+1)=1/6+1/30
1.
A=\(\frac{n-2+5}{n+2}\)có công thức \(\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}\)
A=\(1+\frac{5}{n-2}\)
Ư(5)={-5;-1;1;5}
thay giô các kết quả
n-2=-5
n=-2 ( chọn)
n-2=-1
n= 1 (chọn)
n-2=1
n=3 (chọn)
n-2=5
n=7 (chọn)
vậy n= -2;1;3;7
2.
\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
ta biến đổi \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)thành \(\frac{1}{a}\)
ta thấy trong \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)có về 2 gấp vế trước a lần
ta quy đồng \(\frac{a}{a.\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a.\left(a+1\right)}\)cùng có a+1 ở tử và mẫu ta cùng gạch thì nó thành
\(\frac{1}{a}\)
vậy :\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)