K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

KO SAI ĐÂU ĐỀ ĐÚNG ĐÓ BẠN À

23 tháng 11 2016

60 độ nha bạn

1 tháng 1 2016

ko giai dc nhieu qua voi lại mk ko gioi hih

21 tháng 7 2019

Bài 1: 

O y x A C B 70o D z

*) Ta có: AC // Ox

Oy cắt AC tại C, cắt Ox tại O   

Từ hai điều trên suy ra: \(\widehat{xOy}\)và \(\widehat{ACy}\)là 2 góc đồng vị bằng nhau

Mà \(\widehat{xOy}\)\(70^o\)=> \(\widehat{ACy}\)\(70^o\)

*) Ta có: BA // Oy

AC cắt BA tại A, cắt Oy tại C

Từ 2 điều trên suy ra: \(\widehat{ACy}=\widehat{DAz}\)(2 góc đồng vị bằng nhau)

=> \(\widehat{DAz}\)\(70^o\)

Ta có: \(\widehat{DAz}\)và \(\widehat{BAC}\)là 2 góc đối đỉnh

=> \(\widehat{BAC}\)\(70^o\)

Ta có: \(\widehat{BAC}\)\(\widehat{CAz}=180^o\)(2 góc kề bù)

=> \(\widehat{CAz}=110^o\)

Mà \(\widehat{CAz}\)và \(\widehat{BAD}\)là 2 góc đối đỉnh => \(\widehat{BAD}\)\(110^o\)

Vậy...

26 tháng 7 2018

A B C E 1 2

Do BE là p/g \(\widehat{ABC}\)

\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{1}{2}\widehat{ABC}\)

Xét \(\Delta ABE\)có \(\widehat{BEC}\)là góc ngoài đỉnh E 

\(\Rightarrow\widehat{BEC}=\widehat{A}+\widehat{B_1}=90^0+\widehat{B_1}=110^0\)

\(\Rightarrow\widehat{B_1}=110^0-90^0=20^0\)

\(\Rightarrow\widehat{ABC}=20^0.2=40^0\)

Xét \(\Delta ABC\)vuông tại A 

\(\Rightarrow\widehat{ABC}+\widehat{C}=90^0\)

\(\Rightarrow40^0+\widehat{C}=90^0\)

\(\Rightarrow\widehat{C}=90^0-40^0\)

\(\Rightarrow\widehat{C}=50^0\)

Vậy \(\widehat{C}=50^0\)

10 tháng 5 2018

a) Áp dụng định lí Pi-ta-go vào tam giác ABC vuông tại A có:

               AB2  +   AC2    = BC2

=>    32      +    42       =  BC2

=>   BC2  =   25

=>  BC= 5 cm

b) Áp dụng định lí Pi-ta-go vào tam giác AHB vuông tại H có:

           HB2    +      HA2  =   AB2

=>  HB2 = AB2 - HA2

=> HB2  =  9  -  HA                  (1)

Áp dụng định lí Pi-ta-go vào tam giác AHC vuông tại H có:

          HC2       +    HA2  =  AC2   

 => HC2  =  AC2 - HA2

=> HC2\(\sqrt{HC}\) = 16 -  HA2                      (2)

 Từ (1) và (2) =>  HC2 > HB2 => HC > HB

c) Xét tam giác ACD có:

          AH là đường cao của tam giác ACD  ( AH vuông góc BC )

          AH là đường trung tuyến của tam giác ACD ( HB = HA)

=> tam giác ACD cân tại A (tam giác có 2 trong 4 đường: trung trực, trung tuyến, phân giác, đường cao trùng nhau là tam giác cân)

     CHO MK HỎI ĐIỂM I Ở ĐÂU VẬY! TỰ NHIÊN CÂU D CÓ ĐIỂM I