Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BAD và tam giác BAC, có:
góc BAD = góc BAC = 90o (gt)
BA: cạnh chung
góc ABD = góc ABC (Vì AB là p/g của BC)
Nên: Tam giác BAD = tam giác BAC ( g - c - g)
=> BD = BC (2 cạnh t/ư)
Ta có: AC vuông góc với AB (gt)
AC vuông góc với CF (gt)
=> AB // CF (Quan hệ từ _|_ -> //)
Nên: góc ABC = góc FCB (2 góc so le trong = nhau)
Lại có: CD vuông góc với CF (gt)
BF vuông góc với CF (gt)
=> CD // BF (Quan hệ từ _|_ -> //)
Hay: AC // BF
Do đó: góc ACB = góc FBC (2 góc so le trong = nhau)
Xét tam giác BFC và tam giác CAB, có:
góc FBC = góc ACB (cmt)
BC: cạnh chung
góc FCB = góc ABC (cmt)
Nên: tam giác BFC = tam giác CAB ( g - c - g)
=> góc BAC = góc CFB ( 2 góc t/ư)
Mà: góc BAC = 90o
Do đó: góc CFB = góc BAC = 90o
Xét tam giác BEF và tam giác BCF, có:
góc EBF = góc CBF (Vì BF là p/g của góc CBE)
BF: cạnh chung
góc BFE = góc BFC = 90o (cmt)
Nên: tam giác BEF = tam giác BCF ( g - c - g)
Vậy góc BCF = góc BEF ( 2 góc t/ư)
Hay: góc BCE = góc BEC (đpcm)
b) Trong tam giác ABC, có:
góc A + góc B + góc C = 180o (T/c tổng 3 góc trong 1 tam giác)
Vậy ........
c)Ta có: góc BFC = 90o (cm câu a)
Vậy BF vuông góc với CE (đpcm)
Mk ko chắc chắn ở câu b nhé!
Theo đề bài ta có :
góc ABD = góc DBC
mà AB // Dy nên :
góc ABD = góc BDy
góc DBC = góc ADB
vì Bx // Et nên :
góc BDE = góc DEt
góc DBC = góc tEC
=> góc tEC = góc DEt
=> Et là tia phân giác của góc CED
đây giải có khi sai nên trước khi chép vào cân nhắc kĩ nhé
Giải
Ta có: tam giác ABC: A + B + C = 180 ( định lý )
60 + B + 50 = 180
B + 110 = 180
B = 180 - 110
B = 70
Ta có: B = B1 + B2 ( theo hình mk vẽ và đặt tên)
=> B = 70 => B1 = B2 = 35
Ta có: B1 + A = ADB ( t chất góc ngoài )
35 + 60 = ADB
=> ADB = 95
Mặt khác B2 + C = BDC ( T chất góc ngoài )
35 + 50 = BDC
=> BDC = 85
Vậy .......
Thêm dấu góc nha, mk
A B C E 1 2
Do BE là p/g \(\widehat{ABC}\)
\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{1}{2}\widehat{ABC}\)
Xét \(\Delta ABE\)có \(\widehat{BEC}\)là góc ngoài đỉnh E
\(\Rightarrow\widehat{BEC}=\widehat{A}+\widehat{B_1}=90^0+\widehat{B_1}=110^0\)
\(\Rightarrow\widehat{B_1}=110^0-90^0=20^0\)
\(\Rightarrow\widehat{ABC}=20^0.2=40^0\)
Xét \(\Delta ABC\)vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{C}=90^0\)
\(\Rightarrow40^0+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-40^0\)
\(\Rightarrow\widehat{C}=50^0\)
Vậy \(\widehat{C}=50^0\)