Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị lớn nhất của biểu thức:
\(Q=5-\sqrt{x^2-6x+14}\)
Mọi người giúp mk với!!! mk đang cần gấp!
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
\(B=\frac{1}{-\left(x-2\sqrt{x}+1\right)-2}=\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\)
\(\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow-\left(\sqrt{x}-1\right)^2\le0\)
\(\Leftrightarrow-\left(\sqrt{x}-1\right)^2-2\le-2\)
\(\Leftrightarrow\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\ge\frac{1}{-2}=\frac{-1}{2}\)
\("="\Leftrightarrow x=1\)
Vậy biểu thức B đạt giá trị nhỏ nhất là -1/2 khi x=1
Sử dụng bất đẳng thức AM - GM ta dễ thấy:
\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)
\(\ge2\sqrt{\left(a-1+2\sqrt{a-2}\right)\left(a-1-2\sqrt{a-2}\right)}\)
\(=2\sqrt{\left(a-1\right)^2-4\left(a-2\right)}=2\sqrt{a^2-6a+9}=2\sqrt{\left(a-3\right)^2}\ge2\)( vì a khác 3 )
Hoặc cách khác như thế này:
\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)
\(=\sqrt{\left[a-2+2\sqrt{a+2}+1\right]}+\sqrt{\left[a-2-2\sqrt{a-2}+1\right]}\)
\(=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)
\(=\left|\sqrt{a-2}+1\right|+\left|\sqrt{a-2}-1\right|\)
\(=\left|\sqrt{a-2}+1\right|+\left|1-\sqrt{a-2}\right|\ge\left|\sqrt{a-2}+1+1-\sqrt{a-2}\right|=2\)
Đẳng thức tự tìm nha
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{-2m-8}{1}=4m+8\\x_1x_2=\frac{c}{a}=m^2-8\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=4m+8\Rightarrow x_1^2+x_2^2=4m+8-2x_1x_2\)
\(\Rightarrow x_1^2+x_2^2=4m+8-2\left(m^2-8\right)=4m+8-2m^2+16=4m+24-2m^2\)
hay \(A=-2m^2+4m+24-\left(x_1+x_2\right)\)
\(=-2m^2+4m+24-4m-8=-2m^2+16\le16\)
Dấu ''='' xảy ra khi m = 0
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)+8}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{2\sqrt{x}-1}+\frac{8}{2\sqrt{x}-1}=\sqrt{x}+\frac{8}{2\sqrt{x}-1}\)
Áp dụng BĐT Cô Si cho 2 số dương \(\sqrt{x}\)và \(\frac{8}{2\sqrt{x}-1}\)ta có :
\(\sqrt{x}+\frac{8}{2\sqrt{x}-1}\ge2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)
\(\Rightarrow A_{min}\)\(\Leftrightarrow2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)nhỏ nhất \(\Rightarrow x=0\)
Vậy \(A=0\)\(\Leftrightarrow\sqrt{x}=\frac{8}{2\sqrt{x}-1}\)( tự tính nha )
Phạm Thị Thùy Linh đây nhé
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{1}{2}\left(2\sqrt{x}-1+\frac{16}{2\sqrt{x}-1}\right)+\frac{1}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra khi \(x=\frac{25}{4}\)